[1] 周宇翔, 魏国华, 吴嗣亮. 基于窄脉冲的标量脱靶量测量算法[J]. 系统 工程与电子技术, 2007, 29(2):196-196. ZHOU Yu-xiang, WEI Guo-hua, WU Si-liang. Measurement algorithm of scalar miss distance based on narrow pulse[J]. Systems Engineering and Electronics, 2007, 29(2):196-196. (in Chinese) [2] 李志宇. 矢量脱靶量测量数据处理方法的研究[D]. 北京:北京理工大学, 2007. LI Zhi-yu. A study of data processing method for vector miss distance measureme nt[D]. Beijing: Beijing Institute of Technology, 2007. (in Chinese) [3] 吴嗣亮. 矢量脱靶量测量系统数据处理方法的研究与实践[D]. 北京:北京 理工大学, 1998. WU Si-liang. Study on data processing technique for vector miss distance measur ement system and its practice[D]. Beijing: Beijing Institute of Technology, 19 98. (in Chinese) [4] 李志宇, 吴嗣亮, 魏国华. 一种快速的矢量脱靶量测量算法[J]. 现代防 御技术, 2007, 35(5):63-66. LI Zhi-yu, WU Si-liang, WEI Guo-hua. Measurement of vector miss distance base d on LFM signal model[J]. Modern Defense Technology, 2007, 35(5):63-66. (in Ch inese) [5] 马淑芬, 毛二可, 侯舒娟. 基于多普勒小波变换的脱靶量参数提取方法[J ]. 北京理工大学学报, 2006, 26(12):1081-1085. MA Shu-fen, MAO Er-ke, HOU Shu-juan. Method of missile miss-distance paramet ers based on dopplerlet transform[J]. Transactions of Beijing Institute of Tec hnology, 2006, 26(12):1081-1085. (in Chinese) [6] TAO  Ran, DENG Bing, WANG Yue. Research progress of the fract ional fourier transform in signal processing[J]. Science in China (Ser.F, Info rmation Science), 2006, 49(1):1-25. [7] QI Lin, TAO Ran, ZHOU Si-yong, et al. Detection and paramter estimation of multicomponent LFM signal based on the fractional Fourier transform[J]. Sc ience in China (Ser.F, Information Science), 2004, 47(2):184-198. [8] TAO Ran, ZHANG Feng, WANG Yue. Research progress on discretization of fr actional Fourier transform[J]. Science in China (Ser.F, Information Science), 2008,51(7): 859-880. [9] Ozaktas H M, Arikan O, Kutay M A, et al. Digital computation of the frac tional Fourier transform[J]. IEEE Trans. Signal Processing, 1996, 44(9): 2141- 2150. [10] 邓兵, 陶然, 杨曦. 分数阶Fourier域的采样及分辨率分析[J]. 自然科 学进展, 2007, 17(5):655-661. DENG Bing, TAO Ran, YANG Xi. The analysis of sampling and resolution in the frac tional Fourier domain[J]. Natural Science Progress, 2007, 17(5):655-661. (in C hinese) [11] 赵兴浩,邓兵,陶然,等. 分数阶傅立叶变换数值计算中的量纲归一化研究[ J]. 北京理工大学学报, 2005, 25(4):360-364. ZHAO Xing-hao, DENG Bing, TAO Ran, et al. Dimensional normalization in the digi tal computation of the fractional Fourier transform[J]. Transactions of Beijin g Institute of Technology, 2005, 25(4):360-364. (in Chinese) |