兵工学报 ›› 2025, Vol. 46 ›› Issue (6): 240382-.doi: 10.12382/bgxb.2024.0382
刘沫言1, 刘彦1,2,*(), 白帆1,**(
), 杨利1, 何超1, 王虹富1,3, 高晨宇1, 黄风雷1
收稿日期:
2024-05-17
上线日期:
2025-06-28
通讯作者:
基金资助:
LIU Moyan1, LIU Yan1,2,*(), BAI Fan1,**(
), YANG Li1, HE Chao1, WANG Hongfu1,3, GAO Chenyu1, HUANG Fenglei1
Received:
2024-05-17
Online:
2025-06-28
摘要:
高能炸药在装药结构、不同起爆方式等强载荷激励下产生的超压爆轰状态,可提高炸药能量释放能力。针对新型六硝基六氮杂异伍兹烷(Hexanitrohexaazaisowurtzitane,CL-20)基含铝炸药在超压爆轰作功下的核心问题,就是如何准确表征超压爆轰产物的状态。为此,基于阻抗匹配法测试了CL-20基含铝炸药在超压爆轰条件下的粒子速度,计算冲击波在不同介质中的界面压力,确定CL-20基含铝炸药爆轰反应区的特征参量,结合实数遗传算法(Real-Arithmetic Genetic Algorithm,RA-GA),标定爆轰产物的JWL+多方指数γ状态方程参数,并揭示不同爆轰产物状态方程对超压爆轰雨贡纽压力的影响。研究结果表明:当铝粉含量为0%~30%时,CL-20基含铝炸药超压爆轰反应区持续时间、爆轰反应区宽度与铝粉含量呈正比,较无添加铝粉的反应区宽度增加了1.97~2.7倍,但爆轰应区能量释放效率与铝粉含量呈反比;铝粉含量相同时,添加AP后爆轰反应区能量释放效率降低了25%。另相较于现有超压爆轰状态方程,采用JWL+γ方程能较好地标定超压雨贡纽参数和C-J状态的等熵膨胀,压力计算结果与实验结果偏差在5.5%之内,可为深入认识炸药爆轰反应区的动态力学行为提供理论支撑。
中图分类号:
刘沫言, 刘彦, 白帆, 杨利, 何超, 王虹富, 高晨宇, 黄风雷. CL-20基含铝炸药超压爆轰实验及其状态方程标定[J]. 兵工学报, 2025, 46(6): 240382-.
LIU Moyan, LIU Yan, BAI Fan, YANG Li, HE Chao, WANG Hongfu, GAO Chenyu, HUANG Fenglei. Overdriven Detonation Test of CL-20-based Aluminized Explosive and Determination of Its Equation of State[J]. Acta Armamentarii, 2025, 46(6): 240382-.
序号 | 被测炸药成分和比例/% | ρ0/ (g·cm-3) | pCJ/ GPa | DCJ/ (m·s-1) | |||
---|---|---|---|---|---|---|---|
CL-20 | Al | 粘结剂 | AP | ||||
1 | 68.5 | 25 | 6.5 | 1.888 | 30.477 | 8031.612 | |
2 | 78.5 | 15 | 6.5 | 1.888 | 32.952 | 8355.447 | |
3 | 64.0 | 30 | 6.0 | 1.980 | 30.810 | 8059.320 | |
4 | 54.0 | 30 | 6.0 | 10 | 1.980 | 31.510 | 7694.680 |
表1 被测炸药的组分配比
Table 1 Component ratio of the tested explosive
序号 | 被测炸药成分和比例/% | ρ0/ (g·cm-3) | pCJ/ GPa | DCJ/ (m·s-1) | |||
---|---|---|---|---|---|---|---|
CL-20 | Al | 粘结剂 | AP | ||||
1 | 68.5 | 25 | 6.5 | 1.888 | 30.477 | 8031.612 | |
2 | 78.5 | 15 | 6.5 | 1.888 | 32.952 | 8355.447 | |
3 | 64.0 | 30 | 6.0 | 1.980 | 30.810 | 8059.320 | |
4 | 54.0 | 30 | 6.0 | 10 | 1.980 | 31.510 | 7694.680 |
材料 | Ci/ (cm·μs-1) | Si | / (g·cm-3) | 阻抗/ (g·cm-3·μs) |
---|---|---|---|---|
LiF窗口 | 0.518 | 1.353 | 2.641 | 1.367 |
铜飞片 | 0.394 | 1.489 | 8.930 | 3.515 |
2A12铝 | 0.534 | 1.345 | 2.700 | 2.260 |
表2 实验所用材料的雨贡纽参数
Table 2 Hugoniot parameters of materials used in the experiment
材料 | Ci/ (cm·μs-1) | Si | / (g·cm-3) | 阻抗/ (g·cm-3·μs) |
---|---|---|---|---|
LiF窗口 | 0.518 | 1.353 | 2.641 | 1.367 |
铜飞片 | 0.394 | 1.489 | 8.930 | 3.515 |
2A12铝 | 0.534 | 1.345 | 2.700 | 2.260 |
工况 | 铜飞片速度/(km·s-1) | 铝基板中冲击 波速度/(km·s-1) | 铝基板中 压力/GPa | 炸药样品中粒 子速度/(km·s-1) | 炸药样品中冲 击波速度/(km·s-1) | 炸药样品中 压力/GPa | V | ||
---|---|---|---|---|---|---|---|---|---|
理论计算值 | 实验值 | 误差/% | |||||||
50 | 3.650 | 3.467 | 5.280 | 8.523 | 54.550 | 2.688 | 8.875 | 45.040 | 0.6970 |
3.650 | 3.729 | -2.120 | 8.760 | 60.540 | 2.807 | 8.960 | 47.790 | 0.6890 | |
3.650 | 3.698 | -1.290 | 8.731 | 59.760 | 2.864 | 9.073 | 49.060 | 0.6850 | |
80 | 3.900 | 3.741 | 4.250 | 8.771 | 60.720 | 2.896 | 9.119 | 49.860 | 0.6830 |
3.900 | 3.796 | 2.740 | 8.820 | 61.930 | 2.936 | 9.170 | 50.830 | 0.6798 | |
3.900 | 3.882 | 0.460 | 8.897 | 63.610 | 3.085 | 9.343 | 54.420 | 0.6700 | |
100 | 3.980 | 3.769 | 2.790 | 8.796 | 61.340 | 2.917 | 9.144 | 50.360 | 0.6810 |
3.980 | 3.872 | 2.790 | 8.888 | 63.640 | 2.994 | 9.236 | 52.210 | 0.6760 | |
3.980 | 4.136 | -3.770 | 9.126 | 69.700 | 3.193 | 9.472 | 57.100 | 0.6630 |
表3 炸药配方2的实验测试结果
Table 3 Experimental test results of explosive formula 3
工况 | 铜飞片速度/(km·s-1) | 铝基板中冲击 波速度/(km·s-1) | 铝基板中 压力/GPa | 炸药样品中粒 子速度/(km·s-1) | 炸药样品中冲 击波速度/(km·s-1) | 炸药样品中 压力/GPa | V | ||
---|---|---|---|---|---|---|---|---|---|
理论计算值 | 实验值 | 误差/% | |||||||
50 | 3.650 | 3.467 | 5.280 | 8.523 | 54.550 | 2.688 | 8.875 | 45.040 | 0.6970 |
3.650 | 3.729 | -2.120 | 8.760 | 60.540 | 2.807 | 8.960 | 47.790 | 0.6890 | |
3.650 | 3.698 | -1.290 | 8.731 | 59.760 | 2.864 | 9.073 | 49.060 | 0.6850 | |
80 | 3.900 | 3.741 | 4.250 | 8.771 | 60.720 | 2.896 | 9.119 | 49.860 | 0.6830 |
3.900 | 3.796 | 2.740 | 8.820 | 61.930 | 2.936 | 9.170 | 50.830 | 0.6798 | |
3.900 | 3.882 | 0.460 | 8.897 | 63.610 | 3.085 | 9.343 | 54.420 | 0.6700 | |
100 | 3.980 | 3.769 | 2.790 | 8.796 | 61.340 | 2.917 | 9.144 | 50.360 | 0.6810 |
3.980 | 3.872 | 2.790 | 8.888 | 63.640 | 2.994 | 9.236 | 52.210 | 0.6760 | |
3.980 | 4.136 | -3.770 | 9.126 | 69.700 | 3.193 | 9.472 | 57.100 | 0.6630 |
名称 | 模型描述 |
---|---|
γ律方程[ | pγ= |
JWL方程[ | p=A exp(-R1V)+B exp(-R2V)+ |
Davis方程[ | |
JWLT方程[ | Fe(V)=A0 +B0 +C0 Fp(V)= + + +C0 pH= / |
JWL+γ方程[ | p=m +(1-m) |
表4 超压爆轰状态方程
Table 4 Equation of state for overdriven detonation
名称 | 模型描述 |
---|---|
γ律方程[ | pγ= |
JWL方程[ | p=A exp(-R1V)+B exp(-R2V)+ |
Davis方程[ | |
JWLT方程[ | Fe(V)=A0 +B0 +C0 Fp(V)= + + +C0 pH= / |
JWL+γ方程[ | p=m +(1-m) |
炸药 | ρ0/ (g·cm-3) | DCJ/ (m·s-1) | pCJ/ GPa | VCJ | γ |
---|---|---|---|---|---|
TNT | 1.630 | 6930 | 21.00 | 0.7317 | 2.727 |
COMPB | 1.717 | 7980 | 29.50 | 0.7302 | 2.706 |
PBX 9501 | 1.840 | 8800 | 37.00 | 0.7403 | 2.851 |
PBX 9404 | 1.844 | 8800 | 37.00 | 0.7409 | 2.851 |
JB-9014 | 1.894 | 7.640 | 26.90 | 0.7567 | 3.062 |
LX-17 | 1.905 | 7596 | 25.00 | 0.7726 | 2.841 |
表5 6种炸药EOS参数
Table 5 EOS parameters of 6 explosives
炸药 | ρ0/ (g·cm-3) | DCJ/ (m·s-1) | pCJ/ GPa | VCJ | γ |
---|---|---|---|---|---|
TNT | 1.630 | 6930 | 21.00 | 0.7317 | 2.727 |
COMPB | 1.717 | 7980 | 29.50 | 0.7302 | 2.706 |
PBX 9501 | 1.840 | 8800 | 37.00 | 0.7403 | 2.851 |
PBX 9404 | 1.844 | 8800 | 37.00 | 0.7409 | 2.851 |
JB-9014 | 1.894 | 7.640 | 26.90 | 0.7567 | 3.062 |
LX-17 | 1.905 | 7596 | 25.00 | 0.7726 | 2.841 |
炸药 | A/GPa | B/GPa | R1 | R2 | ω | E0/GPa | m |
---|---|---|---|---|---|---|---|
TNT | 346.70 | 4.145 | 4.001 | 1.998 | 0.433 | 7.0 | 0.738 |
COMPB | 500.39 | 10.47 | 4.110 | 1.597 | 0.366 | 9.2 | 0.368 |
PBX 9501 | 778.63 | 20.47 | 4.410 | 1.599 | 0.308 | 10.2 | 0.467 |
PBX 9404 | 732.67 | 24.17 | 4.300 | 1.999 | 0.307 | 10.2 | 0.355 |
JB-9014 | 667.48 | 3.052 | 4.350 | 1.180 | 0.310 | 7.0 | 0.479 |
LX-17 | 962.69 | 14.76 | 4.998 | 1.988 | 0.494 | 6.9 | 0.437 |
表6 炸药超压爆轰产物的状态方程参数拟合结果
Table 6 Fitting results of the EOS parameters for the overdriven detonation products of the explosives
炸药 | A/GPa | B/GPa | R1 | R2 | ω | E0/GPa | m |
---|---|---|---|---|---|---|---|
TNT | 346.70 | 4.145 | 4.001 | 1.998 | 0.433 | 7.0 | 0.738 |
COMPB | 500.39 | 10.47 | 4.110 | 1.597 | 0.366 | 9.2 | 0.368 |
PBX 9501 | 778.63 | 20.47 | 4.410 | 1.599 | 0.308 | 10.2 | 0.467 |
PBX 9404 | 732.67 | 24.17 | 4.300 | 1.999 | 0.307 | 10.2 | 0.355 |
JB-9014 | 667.48 | 3.052 | 4.350 | 1.180 | 0.310 | 7.0 | 0.479 |
LX-17 | 962.69 | 14.76 | 4.998 | 1.988 | 0.494 | 6.9 | 0.437 |
配方 | ρ/(g·cm-3) | DCJ/(m·s-1) | pCJ/GPa | A/GPa | B/GPa | R1 | R2 | ω | E0/GPa | γ | m |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.888 | 8031.612 | 30.5 | 750.8 | 45.7 | 4.51 | 2.71 | 0.43 | 8.00 | 3.1700 | 0.271 |
2 | 1.888 | 8355.447 | 33.0 | 1968.7 | 197.2 | 6.82 | 2.79 | 0.39 | 9.20 | 2.9210 | 0.340 |
3 | 1.980 | 8059.320 | 30.8 | 2760.0 | 24.0 | 6.19 | 1.64 | 0.32 | 7.67 | 3.1407 | 0.333 |
4 | 1.980 | 7694.680 | 31.5 | 2413.2 | 45.3 | 6.34 | 2.05 | 0.28 | 7.76 | 3.1410 | 0.144 |
表7 CL-20基含铝炸药的JWL+γ律状态方程参数
Table 7 JWL+γ law equation of state parameters of CL-20-based aluminized explosives
配方 | ρ/(g·cm-3) | DCJ/(m·s-1) | pCJ/GPa | A/GPa | B/GPa | R1 | R2 | ω | E0/GPa | γ | m |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.888 | 8031.612 | 30.5 | 750.8 | 45.7 | 4.51 | 2.71 | 0.43 | 8.00 | 3.1700 | 0.271 |
2 | 1.888 | 8355.447 | 33.0 | 1968.7 | 197.2 | 6.82 | 2.79 | 0.39 | 9.20 | 2.9210 | 0.340 |
3 | 1.980 | 8059.320 | 30.8 | 2760.0 | 24.0 | 6.19 | 1.64 | 0.32 | 7.67 | 3.1407 | 0.333 |
4 | 1.980 | 7694.680 | 31.5 | 2413.2 | 45.3 | 6.34 | 2.05 | 0.28 | 7.76 | 3.1410 | 0.144 |
配方 | ρ0/(g·cm-3) | DCJ/ GPa | tCJ/ ns | uCJ/ GPa | x/ mm | pCJ/ GPa | |
---|---|---|---|---|---|---|---|
实验值 | 理论计算值 | ||||||
1 | 1.888 | 2.018 | 8355 | 105 | 2178 | 0.65 | 33.60 |
2 | 1.888 | 2.061 | 8032 | 116 | 2003 | 0.70 | 30.50 |
3 | 1.980 | 2.096 | 8059 | 130 | 2068 | 0.78 | 30.80 |
4 | 1.980 | 2.080 | 7695 | 157 | 2053 | 0.89 | 31.50 |
5 | 1.916 | 1.992 | 8967 | 47 | 2191 | 0.33 | 34.30 |
表8 炸药反应区参数
Table 8 Parameters of explosive reaction zone
配方 | ρ0/(g·cm-3) | DCJ/ GPa | tCJ/ ns | uCJ/ GPa | x/ mm | pCJ/ GPa | |
---|---|---|---|---|---|---|---|
实验值 | 理论计算值 | ||||||
1 | 1.888 | 2.018 | 8355 | 105 | 2178 | 0.65 | 33.60 |
2 | 1.888 | 2.061 | 8032 | 116 | 2003 | 0.70 | 30.50 |
3 | 1.980 | 2.096 | 8059 | 130 | 2068 | 0.78 | 30.80 |
4 | 1.980 | 2.080 | 7695 | 157 | 2053 | 0.89 | 31.50 |
5 | 1.916 | 1.992 | 8967 | 47 | 2191 | 0.33 | 34.30 |
图26 CL-20基含铝炸药爆轰持续时间、爆轰反应区宽度、爆速与铝含量的变化
Fig.26 Variation curves of detonation duration,detonation reaction zone width,detonation velocity and aluminum content of CL-20-based aluminized explosive
[1] |
郑监, 毛致远, 张代鑫, 等. 不同间距两点空中爆炸威力场特性数值模拟研究[J]. 兵工学报, 2023, 44(12):3590-3600.
doi: 10.12382/bgxb.2023.0279 |
|
|
[2] |
doi: 10.1016/j.dt.2019.11.002 |
[3] |
|
[4] |
|
[5] |
陈军, 曾代朋, 孙承纬, 等. JB-9014炸药超压爆轰产物的状态方程[J]. 爆炸与冲击, 2010, 30(6):583-587.
|
|
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
李大红. 凝聚炸药中超压爆轰的实验研究[J]. 高压物理报, 1987, 1(1):81-87.
|
|
|
[23] |
|
[24] |
|
[25] |
|
[26] |
陈闯, 郝永平, 杨丽, 等. 双层介质隔板试验及被发炸药冲击起爆特性分析[J]. 兵工学报, 2017, 38(10):1957-1964.
doi: 10.3969/j.issn.1000-1093.2017.10.011 |
doi: 10.3969/j.issn.1000-1093.2017.10.011 |
|
[27] |
|
[28] |
张宝平, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2006.
|
|
|
[29] |
赵铮, 陶钢, 杜长星. 爆轰产物JWL状态方程应用研究[J]. 高压物理学报, 2009, 23(4):277-282.
|
|
|
[30] |
|
[31] |
刘全, 王瑞利, 林忠, 等. 爆轰计算JWL状态方程参数的不确定度[J] .爆炸与冲击, 2013, 33(6):647-654.
|
|
|
[32] |
|
[33] |
|
[34] |
|
[35] |
王虹富. CL-20基含铝炸药能量输出和驱动特性研究[D]. 北京: 北京理工大学, 2022.
|
|
|
[36] |
高晨宇. C基含铝炸药爆轰驱动圆筒能量输出结构研究[D]. 北京: 北京理工大学, 2022.
|
|
|
[37] |
|
[38] |
周正青, 杜泽晨, 蒋慧灵, 等. 铝含量对TNT/Al炸药爆轰反应区结构的影响[J]. 南京理工大学学报, 2022, 46 (5):523-528.
|
|
|
[39] |
|
[1] | 杨坤, 刘丹阳, 蹇雨桐, 王菁, 刘昌华, 何亚新, 顾玲芝, 陈朗. 电爆驱动高速飞片冲击下HNS小尺寸装药的起爆与爆轰特性[J]. 兵工学报, 2025, 46(6): 240081-. |
[2] | 李瑞, 李伟兵, 靳洪忠, 王桂林, 洪晓文, 朱建军, 李文彬, 王晓鸣. 基于Jones-Wilkins-Lee状态方程的爆轰波相互作用参数理论分析[J]. 兵工学报, 2019, 40(3): 516-521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||