[1] |
LUO Q P, LIU G X, ZHU M S, et al. Constant volume combustion properties of Al/Fe2O3/RDX nanocomposite: the effects of its particle size and chemical constituents[J]. Combustion and Flame, 2022, 238:1-6.
|
[2] |
WANG B B, LIAO X, DELUCAL T, et al. Effects of particle size and content of RDX on burning stability of RDX-based propellants[J]. 防务技术(英文版), 2022, 18(7):1247-1256.
|
[3] |
徐伟巍, 覃欣欣. 浓度与粒径对烟草粉尘爆炸压力的影响[J]. 山东化工, 2020, 49(12): 224-225, 227.
|
|
XU W W, TAN X X. Effect of concentration and particle size on explosive pressure of tobacco dust[J]. Shandong Chemical Industry, 2020, 49(12): 224-225, 227. (in Chinese)
|
[4] |
XIA Y, LUO Y M, WANG J H, et al. Investigation into the ignition sensitivity and detonation kinetics of Al/ RDX energetic dust[J]. Case Studies in Thermal Engineering, 2024:10.1016/j.csite.2024.104635.
|
[5] |
SHI S N, WANG C Y, LI L F, et al. Experimental study of the explosion characteristics of energy-containing materials Nto’s lead salt dust[J]. Combustion Science and Technology, 2023: 1-12.
|
[6] |
胡立双, 刘洋, 杨亚军, 等. 水雾对RDX粉尘爆炸的抑制作用[J]. 爆炸与冲击, 2024, 44(5):158-168.
|
|
HU L S, LIU Y, YANG Y J, et al. Inhibition effect of water mist on RDX dust explosion[J]. Explosion and Shock Waves. 2024, 44(5): 158-168. (in Chinese)
|
[7] |
ZHANG T, ZHANG J F, GENG S, et al. Insight into energy release characteristics of TiH2 dust explosion through ignition experiments and molecular dynamic simulations[J]. Process Safety and Environmental Protection, 2024, 185:853-863.
|
[8] |
张云, 赵懿明, 许张归, 等. MgH2粉尘爆炸的能量释放特性规律[J]. 火炸药学报, 2022, 45(6): 898-904.
doi: 10.14077/j.issn.1007-7812.202206017
|
|
ZHANG Y, ZHAO Y M, XU Z G, et al. Energy release characteristics of MgH2 dust explosion[J]. Chinese Journal of Explosives & Propellants, 2022, 45(6): 898-904. (in Chinese)
|
[9] |
DOU Z G, SHEN X B, ZHOU M C, et al. Experimental studies on the explosion characteristics of coal/syngas/air mixtures[J]. Fuel, 2024, 368:131563.
|
[10] |
WAN SULAIMAN W Z, MOHD IDRIS M F, MD KASMANI R, et al. Dust explosibility and severity of Bayan and Tanito coal[J]. Chemical Engineering & Technology, 2024, 1-6.
|
[11] |
毛文哲, 张国涛, 杨帅帅, 等. 半封闭空间内氢化镁粉尘爆炸火焰的传播特性[J]. 爆炸与冲击, 2024, 44(6):172-182.
|
|
MAO W Z, ZHANG G T, YANG S S, et al. Flame propagation characteristics of magnesium hydride dust explosion in a semi-enclosed space[J]. Explosion and Shock Waves, 2024, 44(6):172-182. (in Chinese)
|
[12] |
方伟, 赵省向, 张奇, 等. 微/纳米铝粉粉尘爆炸特性研究[J]. 火工品, 2021(2):32-36.
|
|
FANG W, ZHAO S X, ZHANG Q I, et al. Study on explosion characteristics of micro/nano aluminum powder dust[J]. Initiators & Pyrotechnics, 2021(2): 32-36. (in Chinese)
|
[13] |
宫婕, 聂百胜, 樊堉, 等. 水平管道内褐煤煤尘爆炸传播特性[J]. 兵工学报, 2020, 41(增刊2): 156-161.
|
|
GONG J, NIE B S, FAN Y, et al. Explosion propagation characteristics of lignite dust in horizontal pipeline[J]. Acta Armamentarii, 2020, 41(S2): 156-161. (in Chinese)
|
[14] |
凤文桢. 镁粉尘的爆炸特性及抑爆研究[D]. 南京: 南京理工大学, 2021.
|
|
FENG W Z. Study on explosion characteristics and explosion suppression of magnesium dust[D]. Nanjing: Nanjing University of Science and Technology, 2021. (in Chinese)
|
[15] |
于小哲. 氢气/铝粉混合体系爆炸特性及火焰传播机理研究[D]. 大连: 大连理工大学, 2020.
|
|
YU X Z. Study on explosion characteristics and flame propagation mechanism of Hydrogen/aluminum powder Mixed system[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
|
[16] |
DYDUCHZ, PEKALSKIA. Methods for more accurate determination of explosion severity parameters[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1002-1007.
|
[17] |
PORTARAPILLO M, SANCHIRICO R, DI BENEDETTO A. On the pyrotechnic ignitors role in dust explosion testing: comparison between 20L and 1m3 explosion vessels[J]. Process Safety Progress, 2021, 40(4):289-295.
|
[18] |
KUNA P, JANOVSKÝ B, PELIKÁN V. Effect of energy and design of ignitor on dust explosion characteristics[J]. Fuel, 2024, 358: 130339.
|
[19] |
荆术祥, 陈仁康, 石天璐, 等. 火炸药粉尘与工业粉尘爆炸特性试验对比研究[J]. 科学技术与工程, 2017, 17(9):325-330.
|
|
JING S X, CHEN R K, SHI T L. et al. Comparative study on explosion characteristics of explosive dust and industrial dust[J]. Science Technology and Engineering, 2017, 17(9):325-330. (in Chinese)
|
[20] |
贾进章, 王东明, 牛鑫, 等. 复杂管网中瓦斯爆炸冲击波与火焰波传播实验研究[J]. 煤田地质与勘探, 2022, 52(4):84-91.
|
|
JIA J Z, WANG D M, NIU X, et al. Experimental study on gas explosion shock wave and flame wave propagation in complex pipe network[J]. Coal Geology and Exploration, 2022, 52(4): 84-91. (in Chinese)
|
[21] |
沈世磊, 张奇, 马秋菊, 等. 湍流对铝粉爆炸特性的影响[J]. 兵工学报, 2016, 37(3): 455-461.
doi: 10.3969/j.issn.1000-1093.2016.03.010
|
|
SHENG S L, ZHANG Q, MA Q J, et al. Effect of turbulence on explosive characteristics of aluminum powder[J]. Acta Armamentarii, 2016, 37(3): 455-461. (in Chinese)
|
[22] |
JANOVSKY B, SKRINSKY J, CUPÁK J, et al. Coal dust, lycopodium and niacin used in hybrid mixtures with methane and hydrogen in 1m3 and 20L chambers[J]. Journal of Loss Prevention in the Process Industries, 2019, 62:103945.
|
[23] |
CLOUTHIER M P, TAVEAU J R, DASTIDAR A G, et al. Iron and aluminum powder explosibility in 20-L and 1-m3 chambers[J]. Journal of Loss Prevention in the Process Industries, 2019, 62:103927.
|