[1] |
王泽山. 火炸药科学技术[M]. 北京: 北京理工大学出版社, 2002.
|
|
WANG Z S. Science and technology of explosives[M]. Beijing: Beijing Institute of Technology Press, 2002. (in Chinese)
|
[2] |
肖忠良. 火炸药导论[M]. 北京: 国防工业出版社, 2019.
|
|
XIAO Z L. Introductory theory of propellants and explosives[M]. Beijing: National Defense Industry Press, 2019. (in Chinese)
|
[3] |
梁昊, 丁亚军, 李世影, 等. 钝感双基发射药迁移失效评价方法[J]. 兵工学报, 2022, 43(2):297-304.
doi: 10.3969/j.issn.1000-1093.2022.02.007
|
|
LIANG H, DING Y J, LI S Y, et al. Evaluation method for migration invalidation of deterred double-base gun propellants[J]. Acta Armamentarii, 2022, 43(2):297-304. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2022.02.007
|
[4] |
AURELL J, HOLDER A L, GULLETT B K, et al. Characterization of M4 carbine rifle emissions with three ammunition types[J]. Environmental Pollution, 2019,254:112982-112991.
|
[5] |
张勇, 丁亚军, 肖忠良. 双基球扁药中的钝感剂迁移现象及其对燃烧性能的影响[J]. 含能材料, 2021, 29(3):220-227.
|
|
ZHANG Y, DING Y J, XIAO Z L. Migration phenomenon of deterrent in double-base oblate spherical propellant and its influence on combustion performance[J]. Chinese Journal of Energetic Materials, 2021, 29(3):220-227. (in Chinese)
|
[6] |
LI Y, LI S Y, DING Y J, et al. Design and fabrication of gradiently-denitrated layer structure of seven-hole gun propellant and its burning performance[J]. Propellants,Explosives,Pyrotechnics, 2023, 48(5):202200304-202200314.
|
[7] |
宋育芳, 肖乐勤, 李纯志, 等. GAP/NC基发射药的不敏感性能[J]. 含能材料, 2023, 31(2):152-159.
|
|
SONG Y F, XIAO L Q, LI C Z, et al. Insensitivity performance of GAP/NC-based gun propellants[J]. Chinese Journal of Energetic Materials, 2023, 31(2):152-159. (in Chinese)
|
[8] |
王琼林, 刘少武, 吴建军. 钝感剂对发射药枪口烟雾特性影响的研究[J]. 火炸药学报, 1998, 21(3):18-20.
|
|
WANG Q L, LIU S W, WU J J. Study on effect of deterrents on gun muzzle smoke[J]. Chinese Journal of Explosives & Propellants, 1998, 21(3):18-20. (in Chinese)
|
[9] |
LIANG H, DING Y J, LI S Y, et al. Combustion performance of spherical propellants deterred by energetic composite deterring agents[J]. ACS Omega, 2021, 6(20):13024-13032.
doi: 10.1021/acsomega.1c00637
pmid: 34056453
|
[10] |
黄振亚, 范建芳, 陈余谦. 叠氮硝胺发射药表面钝感新技术[J]. 兵工学报, 2014, 35(2):29-32.
|
|
HUANG Z Y, FAN J F, CHEN Y Q. A new deterring technique of azidonitramine propellant[J]. Acta Armamentarii, 2014, 35(2):29-32. (in Chinese)
|
[11] |
宋亚苹, 黄振亚, 解德富, 等. 钝感剂种类对叠氮硝胺发射药贮存稳定性的影响[J]. 火炸药学报, 2020, 43(5):553-557.
doi: 10.14077/j.issn.1007-7812.201909004
|
|
SHONG Y P, HUANG Z Y, XIE D F, et al. Effect of deterrents on storage stability of azidonitramine gun propellants[J]. Chinese Journal of Explosives & Propellants, 2020, 43(5):553-557. (in Chinese)
|
[12] |
肖忠良, 丁亚军, 李世影, 等. 发射药表层梯度硝基裁剪方法与效应[J]. 中国材料进展, 2022, 41(2):92-97.
|
|
XIAO Z L, DING Y J, LI S Y, et al. Gradient tailoring method and effect of nitro gradiently distributed propellant[J]. Materials China, 2022, 41(2):92-97. (in Chinese)
|
[13] |
李世影, 丁亚军, 梁昊, 等. 梯度硝基发射药的设计原理与实现方法[J]. 兵工学报, 2020, 41(11):2198-2205.
|
|
LI S Y, DING Y J, LIANG H, et al. Design principle and realizable approach of nitro gradiently distributed propellant[J]. Acta Armamentarii, 2020, 41(11):2198-2205. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.11.006
|
[14] |
李世影, 肖忠良, 李宇, 等. 某中小口径武器用梯度硝基发射装药效应[J]. 含能材料, 2023, 31(11):1134-1140.
|
|
LI S Y, XIAO Z L, LI Y, et al. Study on the effect of nitro gradiently distributed propellant charge for a small and medium caliber weapon[J]. Chinese Journal of Energetic Materials, 2023, 31(11):1134-1140. (in Chinese)
|
[15] |
SEDAT I, DOGUKAN A. Leaching kinetics of Mo Ni,and Al oxides from spent nickel-molybdenum hydrodesulfurization catalyst in H2SO4 solution[J]. Journal of Sustainable Metallurgy, 2021, 7(2):470-480.
|
[16] |
WANG Y H, WU J J, HU G C, et al. Recovery of Li and Fe from spent lithium iron phosphate using organic acid leaching system[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(1):336-346.
|
[17] |
YUAN J, LI H J, DING S. Leaching kinetics of aluminum from alkali-fused spent cathode carbon using hydrochloric acid and sodium fluoride[J]. Processes, 2022, 10(5):849-865.
|
[18] |
ZHANG Y J, LI X H, PAN L P, et al. Effect of mechanical activation on the kinetics of extracting indium from indium-bearing zinc ferrite[J]. Hydrometallurgy, 2010, 102 (43469):95-100.
|
[19] |
LI W, JIAO F, YANG C R, et al. Leaching kinetics of magnesium from spent magnesia-chromium refractories[J]. Journal of Central South University, 2023, 30(4):1179-1190.
|
[20] |
张晋霞, 邹玄, 牛福生. 含锌尘泥中锌的浸出行为及动力学[J]. 中国有色金属学报, 2018, 28(8):1688-1696.
|
|
ZHANG J X, ZOU X, NIU F S. Leaching behavior and leaching kinetics of zinc from zinc-bearing dust[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(8):1688-1696. (in Chinese)
|
[21] |
杨凯华, 张文娟, 何利华, 等. 硫磷混酸浸出黑钨矿动力学[J]. 中国有色金属学报, 2018, 28(1):175-182.
|
|
YANG K H, ZHANG W J, HE L H, et al. Leaching kinetics of wolframite with sulfuric-phosphoric acid[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(1):175-182. (in Chinese)
|
[22] |
孙彩虹, 代梦博, 张文杰, 等. 转底炉工艺次氧化锌的硫酸浸出动力学[J]. 湿法冶金, 2022, 41(2):117-121.
|
|
SUN C H, DAI M B, ZHANG W J, et al. Leaching Kinetics of secondary zinc oxide from rotary hearth furnace using sulfuric acid[J]. Hydrometallurgy of China, 2022, 41(2):117-121. (in Chinese)
|
[23] |
KABAI J. Determination of specific activation energies of metal-oxides and metal-oxide hydrates by measurement of rate of dissolution[J]. Acta Chimica Academiae Scientarium Hungaricae, 1973, 78(1):57-73.
|
[24] |
OCTAVE L. Chemical reaction engineering third edition[M]. New York,NY, US: John Wiley & Sons, 2001.
|
[25] |
LI M T, WEI C, QIU S, et al. Kinetics of vanadium dissolution from black shale in pressure acid leaching[J]. Hydrometallurgy, 2010, 104(2):193-200.
|