欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2024, Vol. 45 ›› Issue (7): 2426-2441.doi: 10.12382/bgxb.2023.0259

• • 上一篇    下一篇

陀螺电机轴承小样本非等间隔的寿命预测研究

蔡曜*(), 王建青, 司玉辉, 王玉琢, 郭伟, 武展   

  1. 西安航天精密机电研究所, 陕西 西安 710100
  • 收稿日期:2023-03-27 上线日期:2023-07-18
  • 通讯作者:

Prediction of Service Life of Gyro Motor Bearing with Small Sample and Unequally Spaced Data

CAI Yao*(), WANG Jianqing, SI Yuhui, WANG Yuzhuo, GUO Wei, WU Zhan   

  1. Xi’an Aerospace Precision Mechatronics Institute, Xi’an 710100, Shaanxi, China
  • Received:2023-03-27 Online:2023-07-18

摘要:

现有轴承寿命预测的研究成果直接应用于陀螺电机轴承时,存在轴承振动信号难采集、模型使用小样本、非等间隔数据建模精度低等问题。选取陀螺电机电流信号作为可测信号并制定执行标准,截取有效电信号;提取初值化均方根值和Renyi熵作为退化特征以描述轴承寿命。设计的非等间隔、融合经验模态分解(Empirical Mode Decomposition,EMD)和生物地理学算法(Biogeography-based Optimization,BBO)的灰色模型(Grey Models,GM),即非等间隔EMD-BBO-GM(1,1),其包括间隔变化、数据分解、模型构建和参数优化共4个模块,可实现轴承寿命预测功能。选取小微挠性陀螺电机进行轴承寿命预测试验。研究结果表明,新模型使用两种退化特征获得的预测寿命与实际寿命相当,拟合精度不低于98%,预测精度不低于95%;与标准GM(1,1)相比,预测精度提升量为24.975%,间隔变化、数据分解和参数优化3个模块的贡献度分别为90.94%、3.64%、5.42%。

关键词: 陀螺电机轴承, 寿命预测, 电流信号, 灰色模型, 非等间隔数据

Abstract:

The bearing vibration signals are difficult to be collectedwhen the existing research results of bearing life prediction are directly applied to gyro motor bearings, and the modeling accuracy is low when the model uses small samples and unequally spaced data.The current signal of gyro motor is selected as the measurable signal, and an implementation standard is formulated to intercept the effective electric signal. Initializing root mean square (IRMS) and Renyi entropy are extracted as degradation features to describe the bearing life.The designed EMD-BBO-GM (1,1) model consists of interval change module, data decomposition module, model construction module and parameter optimization module, which can realize the function of bearing life prediction.A small and micro flexible gyro motoris selected for the bearing life prediction test. The results show that the predicted life of the model is equivalent to the actual life, the fitting accuracy is not less than 98%, and the prediction accuracy is not less than 95%. Compared with the standard GM(1,1) model, the prediction accuracy of this model is improved by 24.975%, and the contributions of interval change module, data decomposition module and parameter optimization module are 90.94%, 3.64% and 5.42%, respectively.

Key words: gyro motor bearing, life prediction, current signal, grey model, unequally spaced data

中图分类号: