欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (7): 2101-2113.doi: 10.12382/bgxb.2022.0198

• • 上一篇    下一篇

水下航行器能源动力系统建模仿真与实验研究

张剑1,2,3,*(), 沈琳1,2   

  1. 1 中国科学院 电工研究所 电力电子与电气驱动重点实验室, 北京 100190
    2 中国科学院大学 电子电气与通讯工程学院, 北京 100049
    3 齐鲁中科电工先进电磁驱动技术研究院, 山东 济南 250102

Simulation Analysis and Experimental Verification of the Electrical Energy Power System for Underwater Vehicles

ZHANG Jian1,2,3,*(), SHEN Lin1,2   

  1. 1 Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2 School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
    3 Qilu Zhongke Electric Advanced Electromagnetic Drive Technology Research Institute, Jinan 250102, Shandong, China
  • Received:2022-03-29 Online:2023-07-30

摘要:

为解决航行器能源动力系统(EEPS)各组件间存在复杂电磁耦合和机电耦合关系,无法用解析法研究系统动态过程的问题,以采用“交-直-交”级联型拓扑的水下航行器EEPS为研究对象,提出一种较为实用的航行器EEPS各组件建模及参数抽取方法,在保证所建模型与实物系统输入输出特性一致的前提下,降低模型复杂度,减轻运算负担,满足实时仿真的要求。搭建了包括柴油机、永磁同步电机、三相电压源变流器和螺旋桨的航行器EEPS一体化仿真平台,分别进行典型工况的仿真研究,并与实物系统地面实验及搭载航行器进行实航海试的数据进行对比,验证所建仿真平台与实物系统动静态性能的一致性。研究结果表明,基于所搭建的仿真平台开展相关控制策略的研究工作,可以缩短台架试验及实航验证时间,进而有效降低系统的研发周期和成本。

关键词: 水下航行器, 能源动力系统, 机电一体化仿真平台, 参数抽取, 实航验证

Abstract:

The complexity of the electromagnetic and electromechanical coupling relationships in the Electrical Energy Power System (EEPS) poses challenges for analytical studies. To address the challenges, this paper focuses on the EEPS of future generation vessels with a cascade AC-DC-AC topology. A mathematical model for the EEPS is derived, and a parameter extraction method is provided. The complexity-accuracy relationship of each component model has been fully considered to meet the needs of real-time simulation. An electromechanical integration simulation model is constructed with a set of diesel engine and a controller, PMSM, converter, propeller, and vessel as a whole. Simulation studies of typical working conditions are carried out respectively, and the simulation results are compared with the results of ground experiment and real cruising test of the EEPS with an underwater vehicle. A good agreement between simulation model and the real EEPS has been verified by the test results. Based on the simulation platform built in this paper, the time of bench test and real cruising verification can be shortened, and the R&D costs of the EEPS can be reduced significantly.

Key words: underwater vehicle, electrical energy power system, electromechanical integration simulation platform, parameter extraction, real cruising test