[1] |
耿雪浩, 周克栋, 赫雷, 等. 基于镀层界面剪切疲劳损伤的枪管寿命预测研究[J]. 兵工学报, 2019, 40(12):2416-2424.
doi: 10.3969/j.issn.1000-1093.2019.12.004
|
|
GENG X H, ZHOU K D, HE L, et al. Life Prediction of gun barrel based on shear fatigue damage of coating interface[J]. Acta Armamentarii, 2019, 40(12):2416-2424. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.12.004
|
[2] |
赵丙峰, 谢里阳, 徐国梁, 等. 多轴疲劳寿命预测方法[J]. 失效分析与预防, 2017, 12(5):323-330.
|
|
ZHAO B F, XIE L Y, XU G L, et al. Summarization of multi-axial fatigue life prediction methods[J]. Failure Analysis and Prevention, 2017, 12(5):323-330. (in Chinese)
|
[3] |
JAWAHIR I S, BRINKSMEIER E, SAOUBI M R, et al. Surface integrity in material removal processes:recent advances[J]. CIRP Annals-Manufacturing Technology, 2011, 60:603-626.
doi: 10.1016/j.cirp.2011.05.002
URL
|
[4] |
LIAO Z R, ANDREA L M, JAMES M, et al. Surface integrity in metal machining-Part I:fundamentals of surface characteristics and formation mechanisms[J]. International Journal of Machine Tools and Manufacture, 2021, 162:103687.
doi: 10.1016/j.ijmachtools.2020.103687
URL
|
[5] |
WANG B, ZHANG P, LIU R, et al. An optimization criterion for fatigue strength of metallic materials[J]. Materials Science and Engineering A, 2018, 736:105-110.
doi: 10.1016/j.msea.2018.08.085
URL
|
[6] |
庞建超. 高强度钢金属材料的疲劳与断裂研究[D]. 沈阳: 中国科学院, 2012.
|
|
PANG J C. Study on fatigue and fracture of high strength steel[D]. Shenyang: Chinese Academy of Sciences, 2012. (in Chinese)
|
[7] |
WU L J, LUO K Y, LIU Y, et al. Effects of laser shock peening on the micro-hardness, tensile properties, and fracture morphologies of CP-Ti alloy at different temperatures[J]. Applied Surface Science, 2018, 431:122-134.
doi: 10.1016/j.apsusc.2017.05.202
URL
|
[8] |
WANG Y, PAN X Y, WANG X B, et al. Influence of laser shock peening on surface integrity and tensile property of high strength low alloy steel[J]. Chinese Journal of Aeronaut, 2021, 34(6): 199-208.
|
[9] |
NALLA R K, ALTENBERGER I, NOSTER U, et al. On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures[J]. Materials Science & Engineering A, 2003, 355(1/2):216-230.
|
[10] |
徐海丰. 基于内应力的Ti-6A1-4V合金低周疲劳力学行为与寿命预测能量模型研究[D]. 杭州: 浙江大学, 2018.
|
|
XU H F. Internal stress based investigations of low cycle fatigue behavior and life prediction energy model of Ti-6Al-4V Alloy[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
|
[11] |
刘志兵, 王永, 王西彬, 等. 一种考虑加工表面完整性的能量法预测疲劳寿命方法: CN113252479A[P]. 2021-08-13.
|
|
LIU Z B, WANG Y, WANG X B, et al. An energy method for fatigue life prediction considering machined surface integrity: CN113252479A[P]. 2021-08-13. (in Chinese)
|
[12] |
COTTRELL A H. Dislocations and plastic flow in crystals[M]. London, UK: Oxford University Press, 1953.
|
[13] |
FOURNIER B, SAUZAY M, CAËS C, et al. Analysis of the hysteresis loops of a martensitic steel: part II: study of the influence of creep and stress relaxation holding times on cyclic behavior[J]. Materials Science and Engineering A, 2006, 437:183-196.
doi: 10.1016/j.msea.2006.08.086
URL
|
[14] |
GIORDANA M F, ALVAREZ A I, ARMAS A. Microstructural characterization of EUROFER 97 during low-cycle fatigue[J]. Journal of Nuclear Materials, 2012, 424:247-251.
doi: 10.1016/j.jnucmat.2012.03.019
URL
|
[15] |
MURAKAMI Y. Metal fatigue: effects of small defects and nonmetallic inclusions[M]. Amsterdam, the Netherland: Elsevier, 2002.
|
[16] |
ITOGA H, TOKAJI K, NAKAJIMA M, et al. Effect of surface roughness on step-wise S-N characteristics in high strength steel[J]. International Journal of Fatigue, 2003, 25(5):379-385.
doi: 10.1016/S0142-1123(02)00166-4
URL
|
[17] |
SURESH S. Fatigue of materials[M]. 2nd ed. New York, NY, US: Cambridge University Press, 2004.
|
[18] |
AROLA D, RAMULU M. An examination of the effects from surface texture on the strength of fiber reinforced plastics[J]. Journal of Composite Materials, 1999, 33(2):102-123.
doi: 10.1177/002199839903300201
URL
|
[19] |
王彦才. 车辆扭杆弹簧设计与制造[M]. 北京: 国防工业出版社, 1996.
|
|
WANG Y C. Design and manufacture of torsion bar spring for vehicle[M]. Beijing: National Defence Industry Press, 1996. (in Chinese)
|
[20] |
FOURNIER B, SAUZAY M, CAES C, et al. Analysis of the hysteresis loops of a martensitic steel - Part I: study of the influence of strain amplitude and temperature under pure fatigue loadings using an enhanced stress partitioning method[J]. Materials Science and Engineering A, 2006, 437:183-196.
doi: 10.1016/j.msea.2006.08.086
URL
|
[21] |
FEAUGAS X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K:back stress and effective stress[J]. Acta Materialia, 1999, 47:3617-3632.
doi: 10.1016/S1359-6454(99)00222-0
URL
|