[1] Tan H, Lin C, Huang Y, et al. The cohesive law for the particle/matrix interfaces in high explosives[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1892-1917. [2] Galfetti L, Deluca L T, Severini F, et al. Pre and post-burning analysis of nano-aluminized solid rocket propellants[J]. Aerospace Science and Technology, 2007, 11(1): 26-32. [3] Pourmortazavi S M, Hajimirsadeghi S S, Kohsari I, et al. Thermal decomposition of pyrotechnic mixtures containing either aluminum or magnesium powder as fuel[J]. Fuel, 2008, 87(2): 244-251. [4] Shoshin Y L, Dreizin E L. Particle combustion rates for mechanically alloyed Al-Ti and aluminum powders burning in air[J]. Combustion and Flame, 2006, 145(4): 714-722. [5] Ulas A, Kuo K K, Gotzmer C. Ignition and combustion of boron particles in fluorine containing environments[J]. Combustion and Flame, 2001, 127(1-2): 1935-1957. [6] Rammile E, Buscall R, Frith W J, et al. Extent of reaction in energetic particulate mixtures: role of composition and particle size ratio[J]. Journal of Chemical Physics, 1999, 110(17): 8730-8741. [7] Lee J S, Hsu C K. The effect of different zirconium on thermal behaviors for Zr/KClO4 priming composition[J]. Thermochimica Acta, 2001, 367-368: 375-379. [8] Fathollahi M, Pourmortazavi S M, Hosseini S G. The effect of the particle size of potassium chlorate in pyrotechnic compositions[J]. Combustion and Flame, 2004,138(3): 304-306. [9] Tribelhorn M J, Venables D S, Brown M E. Combustion of some zinc-fuelled binary pyrotechnic systems[J]. Thermochimica Acta, 1995, 256(2): 309-324. |