| [1] |
王志坚, 王鹏, 刘志影. 光学工程原理[M]. 北京: 国防工业出版社出版, 2010.
|
|
WANG Z J, WANG P, LIU Z Y. Principles of optical engineering[M]. Beijing: National Defense Industry Press, 2010. (in Chinese)
|
| [2] |
王之江. 光学技术手册[M]. 北京: 机械工业出版社.1994.
|
|
WANG Z J. Optical technology handbook[M]. Beijing: Mechanical Industry Press, 1994. (in Chinese)
|
| [3] |
孙家抦. 遥感原理与应用[M]. 武汉: 武汉大学出版社, 2005.
|
|
SUN J B. Principles and applications of remote sensing[M]. Wuhan: Wuhan University Press, 2005. (in Chinese)
|
| [4] |
黄海乐, 朱雷鸣, 彭宇, 等. 刃边法检测空间相机MTF的方法研究[J]. 光学与光电技术, 2013, 11(2):71-73.
|
|
HUANG H L, ZHU L M, PENG Y, et al. Research on MTF of space camera based on an edge method[J]. Optics & Optoelectronic Technology, 2013, 11(2):71-73. (in Chinese)
|
| [5] |
徐伟伟, 张黎明, 杨宝云, 等. 光学卫星相机在轨调制传递函数检测方法[J]. 光学学报, 2020, 40(22):188-194.
|
|
XU W W, ZHANG L M, YANG B Y, et al. On-orbit modulation transfer function estimation of optical satellite camera[J]. Acta Optica Sinica, 2020, 40(22):188-194. (in Chinese)
|
| [6] |
夏启明. 航空相机动态分辨率检测系统研究[D]. 长春: 长春理工大学, 2010
|
|
XIA Q M. Research on dynamic resolution testing system for aerial cameras[D]. Changchun: Changchun University of Science and Technology, 2010. (in Chinese)
|
| [7] |
张晓辉, 韩昌元, 潘玉龙. 传输型CCD相机综合像质评价方法的研究[J]. 红外与激光工程, 2008.37(4):697-701
|
|
ZHANG X H, HAN C Y, PAN Y L. Evaluation of general image quality of transfer optical remote sensing CCD camera[J]. Infrared and Laser Engineering, 2008, 37(4):697-701. (in Chinese)
|
| [8] |
姚园, 许永森, 丁亚林, 等. 大视场三线阵航空测绘相机光学系统设计[J]. 光学精密工程, 2018, 26(9):2336-2343.
|
|
YAO Y, XU Y S, DING Y L, et al. Optical-system design for large field-of-view three-line array airborne mapping camera[J]. Optics and Precision Engineering, 2018, 26(9):2336-2343. (in Chinese)
|
| [9] |
彭建伟, 陈卫宁, 张高鹏, 等. 低照度宽幅航空相机系统设计[J]. 红外与激光工程, 2021, 50(12):321-329.
|
|
PENG J W, CHEN W N, ZHANG G P, et al. Design of wide view aerial camera system in low-light[J]. Infrared and Laser Engineering, 2021, 50(12):321-329. (in Chinese)
|
| [10] |
蒋宁. 一种航空相机地面分辨率判别方法[J]. 装备制造技术, 2015, 9:131-132.
|
|
JIANG N. Identification method for ground resolution of an aerial camera[J]. Equipment Manifacturing Technology, 2015, 9:131-132. (in Chinese)
|
| [11] |
王跃, 刘海英, 陈晓宇, 等. 基于三线靶标的航空相机地面分辨率质量评价[J]. 光电技术应用, 2024, 39(5):35-39.
|
|
WANG Y, LIU H Y, CHEN X Y, et al. Quality evaluation of ground resolution of aerial camera based on three line target[J]. Electro-Optic Technology Application, 2024, 39(5):35-39. (in Chinese)
|
| [12] |
王涛. 亚米级空间分辨率光学卫星影像大气辐射校正研究[D]. 合肥: 中国科学技术大学, 2021.
|
|
WANG T. Research on atmospheric radiation correction of optical satellite imagery with sub-meter spatial resolution[D]. Hefei: University of Science and Technology of China, 2021.
|
| [13] |
王仁礼, 郝振纯, 陈波, 等. 大气湍流对天基遥感系统地面分辨率的影响[J]. 测绘科学技术学报, 2009, 26(2):114-117.
|
|
WANG R L, HAO Z C, CHEN B, et al. Effect of atmospheric turbulence on image ground-resolution of space-based remote sensing system[J]. Journal of Geomatics Science and Technology, 2009, 26(2):114-117. (in Chinese)
|
| [14] |
郑昱君, 徐伟伟, 李鑫, 等. 基于阵列点源的光学遥感卫星像质评价方法[J]. 光子学报, 2023, 52(4):170-178.
|
|
ZHENG Y J, XU W W, LI X, et al. Image quality evaluation method for optical remote sensing satellite based on an array of point sources[J]. Acta Photonica Sinica, 2023, 52(4):170-178. (in Chinese)
|
| [15] |
宁传旺. 外场可见光目标模拟器技术研究[D]. 南京: 南京理工大学, 2021.
|
|
NING C W. Research on visible light target simulator technology for field testing[D]. Nanjing: Nanjing University of Science and Technology, 2021.
|
| [16] |
GB/T 19953-2005《数码照相机分辨率的测量》(IS0 12233:2000)[S]. 北京: 中国标准出版社, 2006.
|
|
GB/T 19953-2005,Photography-electronic still picture imaging-resolution and spatial frequency responses(ISO 12233:2000,IDT)[S]. Beijing: Standards Press of China, 2006. (in Chinese)
|
| [17] |
中国机械工业联合会. GB/T 19870-2018工业检测型红外热像仪[S]. 北京: 中国标准出版社, 2018.
|
|
China Machinery Industry Federation. GB/T 19870-2018,Industrial inspecting infrared thermal imagers[S]. Beijing: China Standards Press, 2018.
|
| [18] |
黄俊泽. 基于高分辨率面阵相机与高光谱成像仪的机载成像系统研究[D]. 上海: 中国科学院上海技术物理研究所, 2021.
|
|
HUANG J Z. Research on airborne imaging system based on high resolution area-array camera and hyperspectral imager[D]. Shanghai: Shanghai Institute of Technical Physics,Chinese Academy of Sciences, 2021. (in Chinese)
|
| [19] |
李雪晴, 陈明剑. 格网化网络RTK地域性精度解算[J]. 全球定位系统, 2024, 49(1):109-113.
|
|
LI X Q, CHEN M J. Grid network RTK regional accuracy solution[J]. GNSS World of China, 2024, 49(1):109-113.
|
| [20] |
张小宇, 张建利. 低空UAV航测地面分辨率影响因素分析[J]. 北京测绘, 2018, 32(10):1122-1124.
|
|
ZHANG X Y, ZHANG J L. Analysis on ground sample distance issues of low-altitude unmanned aerial vehicle survey[J]. Beijing Surveying and Mapping, 2018, 32(10):1122-1124.
|
| [21] |
杨润书, 马燕燕, 殷海舟. 低空无人机航测系统地面分辨率与航高的关系研究[J]. 地矿测绘, 2013, 29(3):1-2.
|
|
YANG R S, MA Y Y, YIN H Z. Relationship between ground resolution and flying height about the low altitude unmanned aerial vehicle aerophotographic system[J]. Surveying and Mapping of Geology and Mineral Resources, 2013, 29(3):1-2. (in Chinese)
|