[1] |
WEHNER D, FREY T. Offshore unexploded ordnance detection and data quality control—a guideline[J]. Applied Earth Observations and Remote Sensing, 2022, 15(5):7483-7498.
|
[2] |
PETER M, TJARK M, CHRISTOPH O. Mobilization of unexploded ordnance on the seabed[J]. Toxics, 2022, 10(7):389.
|
[3] |
NOVIK G P. Analysis of samples of high explosives extracted from explosive remnants of war[J]. Total Environ, 2022, 842(3):156864.
|
[4] |
CHEN S D, ZHANG S, ZHU J, et al. Accurate measurement of characteristic response for unexploded ordnance with transient electromagnetic system[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4):1728-1736.
|
[5] |
MAREIKE K, EEFKE M, JENS G, et al. Exploration of the munition dumpsite kolberger heide in kiel bay,Germany:example for a standardised hydroacoustic and optic monitoring approach[J]. Continental Shelf Research, 2020, 198(1):104108.
|
[6] |
谢兴博, 周向阳, 李裕春, 等. 未爆弹药处置技术[M]. 北京: 国防工业出版社, 2021.
|
|
XIE X B, ZHOU X Y, LI Y C, et al. Unexploded ordnance disposal technology[M]. Beijing: National Defense Industry Press, 2021. (in Chinese)
|
[7] |
ROMINA S, STREHSE J, BRENNER M, et al. Exposure to dissolved TNT causes multilevel biological effects in baltic mussels (mytilus spp.)[J]. Marine Environmental Research, 2021, 167(10):105264.
|
[8] |
URSULA S, JULIAN S, TOBIAS S, et al. Blast injury on harbour porpoises (Phocoena phocoena) from the baltic sea after explosions of deposits of world War II ammunition[J]. Environment International, 2022, 159(12):107014.
|
[9] |
PETER D, BRANDON C, SARAH E, et al. Physical effects of sound exposure from underwater explosions on pacific sardines[J]. Acoustical Society of Amercia, 2022, 152(2):733-744.
|
[10] |
JACEK B, MARTA S, GRZEGORZ S, et al. Sea-dumped ammunition as a possible source of mercury to the baltic sea sediments[J]. The Science of the Total Environment, 2019, 674(10):363-373.
|
[11] |
LISBET F, TERJE A. Creating conditions for critical trust-how an uncertainty-based risk perspective relates to dimensions and types of trust[J]. Safety Science, 2020, 133(6):105008.
|
[12] |
NATHALIE F C, THIERRY G, OLIVIER M, et al. Assessment of risks induced by countermining unexploded large-charge historical ordnance in a shallow water environment—part I:real case study[J]. IEEE Oceanic Engineering, 2022, 47(2):350-373.
|
[13] |
URSZULA K, MAGDALENA B, KATARZYNA L, et al. Distribution and bioavailability of mercury in the surface sediments of the baltic sea[J]. Environmental Science and Pollution Research, 2021, 28(4):35690-35708.
|
[14] |
张洋洋, 赵洪山, 彭伟, 等. 国内外防弹标准防护等级的研究与对比[J]. 兵工学报, 2022, 43(9):2017-2036.
|
|
ZHANG Y Y, ZHAO H S, PENG W, et al. Research and comparison of bulletproof standard protection levels at home and abroad[J]. Acta Armamentarii, 2022, 43(9):2017-2036. (in Chinese)
|
[15] |
史明明, 万丽强, 陆鹏, 等. 国内外报废弹药处理技术发展现状[J]. 火工品, 2022(3):75-80.
|
|
SHI M M, WAN L Q, LU P, et al. Development status of disposal technology of scrap munitions at home and abroad[J]. Explosives, 2022(3):75-80. (in Chinese)
|
[16] |
MILAN B, BOZIDAR P. UAV thermal imaging for unexploded ordnance detection by using deep learning[J]. Remote Sensing, 2023, 15(4):967.
|
[17] |
TANG M H, ZENG Q N, CHEN S D, et al. Real-time detection system for portable transient electromagnetic unexploded ordnance[J]. Journal of Physics:Conference Series, 2023, 2624(1):012019.
|
[18] |
曹贺全, 张广明, 孙素杰, 等. 装甲车辆防护技术研究现状与发展[J]. 兵工学报, 2012, 33(12):1549-1554.
|
|
CAO H Q, ZHANG G M, SUN S J, et al. Research status and development of protection technology for armored vehicles[J]. Acta Armamentarii, 2012, 33(12):1549-1554. (in Chinese)
|
[19] |
JACK B, MARTIN W, EOIN M, et al. Inverse modelling and classification of magnetic responses to improve marine unexploded ordnance rationalization[J]. Geophysical Journal International, 2024, 1(1):123-144.
|
[20] |
CHEN K, ZHAO Q X, DENG M, et al. Seawater electromagnetic noise reduction in marine magnetotelluric data using current meters[J]. Earth,Planets and Space, 2020, 72(4):1-11.
|
[21] |
ZHANG J L, XIANG X B, LI W J. Advances in marine intelligent electromagnetic detection system,technology,and applications:a review[J]. IEEE Sensors Journal, 2023, 23(5):4312-4326.
|
[22] |
WANG H P, TAO M, LUO W, et al. Overhauser sensor array based 3-D magnetic gradiometer for the detection of shallow subsurface unexploded ordnance[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72(5):1-11.
|
[23] |
TIMOTHY S, ALEX N, WILLIAN D F, et al. A low-cost UAV system for rapid detection and identification of unconventional minefields[J]. Journal of Conventional Weapons Destruction, 2018, 22(3):10.
|
[24] |
QI Z P, LI X, LI H, et al. First results from drone-based transient electromagnetic survey to map and detect unexploded ordnance[J]. Geoscience and Remote Sensing Letters, 2020, 17(12):2055-2059.
|
[25] |
KOBASHIGAWA J S, YOUN H S, ISKANDER M F, et al. Classification of buried targets using ground penetrating radar:comparison between genetic programming and neural networks[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10(9):971-974.
|
[26] |
KOLSTER M E, DOSSING A. Scalar magnetic difference inversion applied to UAV-based UXO detection[J]. Geophysical Journal International, 2020, 224(1):468-486.
|
[27] |
BAJIC M. Modeling and simulation of very high spatial resolution UXOs and landmines in a hyperspectral scene for UAV survey[J]. Remote Sensing, 2021, 13(5):837.
|
[28] |
KOLSTER M E, WIGH M D, VILIHELMSEN T B, et al. High-speed magnetic surveying for unexploded ordnance using UAV systems[J]. Remote Sensing, 2022, 14(5):1134.
|
[29] |
WALTER C, BRAUN A, FOTOPOULOS G. High-resolution unmanned aerial vehicle aeromagnetic surveys for mineral exploration targets[J]. Geophysical Prospecingt, 2020, 68(1):334-349.
|
[30] |
MICHAEL C, CLAIRE S, DAVID B, et al. Inversion of magnetic data acquired with a rotary-wing unmanned aircraft system for gold exploration[J]. Pure and Applied Geophysics, 2021, 178(1):501-516.
|
[31] |
ARNE D, EDUARDO L S, GUILLAUME M, et al. A high-speed,light-weight scalar magnetometer bird for km scale UAV magnetic surveying:on sensor choice,bird design,and quality of output data[J]. Remote Sensing, 2021, 13(4):649.
|
[32] |
CHO S W, MA J, YAKIMENKO O. Aerial multi-spectral AI-based detection system for unexploded ordnance[J]. Defence Technology, 2022, 27(9):24-37.
|
[33] |
HAMEED Q A, HUSSEIN H A, AHMED M A, et al. UXO-AID:a new UXO classification application based on augmented reality to assist deminers[J]. Computers, 2022, 11(8):124.
|
[34] |
IBRAHEEM I M, ALADAD H, ALNASER M F, et al. “IAS:a new novel phase-based filter for detection of unexploded ordnances[J]. Remote Sensing, 2021, 13(21):4345.
|
[35] |
BREDECK A, SCHMIDT V, SCHMOLDT J P. Novel approaches of borehole-GPR data processing and visualization-application for unexploded ordnance detection[J]. Near Surface Geophysics, 2024, 22(4):1-8.
|
[36] |
KULGEMEYER T, SCHWARTZ M, BILLINGS S D. Case study of marine UXO and scrap metal discrimination by relative size inferred from electromagnetic polarizability[C]// Proceedings of the Meetings Acoust,Acoustical Society of America, 2021, 44(1):070004.
|
[37] |
PAUL A L, CHEONG S H, STEPHEN P R, et al. In-situ comparison of high-order detonations and low-order deflagration methodologies for underwater unexploded ordnance (UXO) disposal[J]. Marine Pollution Bulletin, 2024, 199(1):115965.
|
[38] |
COTTRELL L, DUPUY K. Alternatives to open burning and open detonation:the disparity between HMA and commercial best practices[J]. Conventional Weapons Destruction, 2021, 25(1):22.
|
[39] |
GUPTA R, KUMAR M, SINGH S K, et al. Deflagration to detonation transition in cast explosives:revisiting the classical model[J]. Propellants,Explosives,Pyrotechnics, 2022, 47(3):202100284.
|
[40] |
MIETKIEWICZ R. High explosive unexploded ordnance neutralization-tallboy air bomb case study[J]. Defence Technology, 2022, 3(18):524-535.
|
[41] |
ROBINSON S P, WANG L, CHEONG S H, et al. Underwater acoustic characterisation of unexploded ordnance disposal using deflagration[J]. Marine Pollution Bulletinl, 2020, 160(11):111646.
|
[42] |
CRISTAUDO D, PULEO J A. Observation of munitions migration and burial in the swash and breaker zones[J]. Ocean Engineering, 2020, 205(6):107322.
|
[43] |
HAZELWOOD R A, MACEY P C. Noise waveforms within seabed vibrations and their associated evanescent sound fields[J]. Marine Science Engineering, 2021, 9(7):733.
|
[44] |
ROBINSON S P, WANG L, CHEONG S H, et al. Acoustic characterisation of unexploded ordnance disposal in the north sea using high order detonations[J]. Marine Pollution Bulletin, 2022, 184(10):114178.
|
[45] |
BRYAN O, HANSEN R E, HAINES T S F, et al. Challenges of labelling unknown seabed munition dumpsites from acoustic and optical surveys:a case study at skagerrak[J]. Remote Sensing, 2022, 14(11):2619.
|
[46] |
LURTON X, LAMARCHE G, WEBER T, et al. Backscatter measurements by seafloor-mapping sonars[M]. London,UK: GEOHAB, 2015.
|
[47] |
SALOMONS E M, BINNERTS B, BETKE K, et al. Noise of underwater explosions in the north sea.a comparison of experimental data and model predictions[J]. Acoustical Society of America, 2021, 149(3):1878-1888.
|
[48] |
NOWAK P R, GAJEWSKI T, PEKSA P, et al. Experimental verification of different analytical approaches for estimating underater explosives[J]. International Journal of Protective Structures, 2022, 14(4):571-583.
|
[49] |
KHOSRONEJAD A, FLORA K, KANG S, et al. Effect of inlet turbulent boundary conditions on scour predictions of coupled LES and morphodynamics in a field-scale river:bankfull flow conditions[J]. Journal of Hydraulic Engineering, 2020, 146(4):04020020.
|
[50] |
BILLINGS S D, PASION C, WALKER S, et al. “Magnetic models of unexploded ordnance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 8(44):2115-2124.
|
[51] |
KOLSTER M E, DOSSING A. Simultaneous line shift and source parameter inversion applied to a scalar magnetic survey for small unexploded ordnance[J]. Near Surface Geophysics, 2021, 19(6):629-641.
|
[52] |
KASS M A, CHRISTIANSEN A V, AUKEN E, et al. Efficient reduction of powerline signals in magnetic data acquired from a moving platform[J]. IEEE Transactions on Geoscience and Remote Sensing. 2020, 59(8):7137-7146.
|
[53] |
WIGH M D, HANSEN T M, DOSSING A. Synthetic case study:discrimination of unexploded ordnance (UXO) and non-UXO sources with varying remanent magnetization strength using magnetic data[J]. Geophysical Journal International, 2021, 228(2):773-791.
|
[54] |
刘荣林. 海洋磁力仪在某近岸海域未爆弹探测中的应用[J]. 海洋测绘, 2021, 41(4):48-52.
|
|
LIU R L. Application of marine magnetometer in detection of unexploded bombs in a coastal area[J]. Ocean Surveying and Mapping, 2021, 41(4):48-52. (in Chinese)
|
[55] |
ISAACS J C. Sonar automatic target recognition for underwater UXO remediation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop.Boston,MA,US:IEEE, 2015:134-140.
|
[56] |
ZHAO Y, ZHANG J H, LI J H, et al. A brief review of magnetic anomaly detection[J]. Measurement Science and Technology, 2020, 4(32):13.
|
[57] |
JIN H H, GUO J, WANG H B, et al. Magnetic anomaly detection and localization using orthogonal basis of magnetic tensor contraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8):5944-5954.
|
[58] |
WANG X B, LIU H, WANG H P, et al. Quantitative analysis of the measurable areas of differential magnetic gradient tensor systems for unexploded ordnance detection[J]. IEEE Sensors Journal, 2021, 21(5):5952-5960.
|
[59] |
HE Z B, HU X X, TENG Y T, et al. Characterization of the effects of temperature and instrument drift in long-term comparative geomagnetic vector observations[J]. Atmosphere, 2022, 13(3):449.
|
[60] |
WEN Z, HAN S T, GAO C W, et al. A deep learning method for recognizing types of unexploded ordnance based on magnetic detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62(5):1-13.
|
[61] |
WANG X F, WANG P, ZHANG X T, et al. Target electromagnetic detection method in underground environment:a review[J]. IEEE Sensors Journal, 2022, 22(14):13835-13852.
|
[62] |
LI Q Z, LI Z N, SHI Z Y, et al. Magnetic object recognition with magnetic gradient tensor system heading-line surveys based on kernel extreme learning machine and sparrow search algorithm[J]. Measurement, 2022, 203(11):111967.
|
[63] |
WANG M C, GUO Y G, WANG Z, et al. Magnetic target detection using PointRend-based region-convolutional neural network[J]. Geoscience and.Remote Sensing Letters, 2022, 19(9):1-5.
|
[64] |
XU Y S, WANG Y, BIAN L X, et al. A real-time calibration method of magnetometer array’s misalignment errors with AC modulated three-axis coil[J]. Measurement, 2022, 199(7):111593.
|
[65] |
田轩, 王晓峰, 黄亚峰, 等. 国内外废旧火炸药绿色处理技术进展[J]. 兵工自动化, 2015, 34(4):81-84.
|
|
TIAN X, WANG X F, HUANG Y F, et al. Progress of green treatment technology of waste explosive at home and abroad[J]. Ordnance Automation, 2015, 34(4):81-84. (in Chinese)
|
[66] |
MU Y X, ZHANG X J, XIE W P, et al. Automatic detection of near-surface targets for unmanned aerial vehicle (UAV) magnetic survey[J]. Remote Sensing, 2020, 12(3):452-466.
|
[67] |
MU Y X, XIE W P, ZHANG X J. The joint UAV-borne magnetic detection system and cart-mounted time domain electromagnetic system for UXO detection[J]. Remote Sensing, 2021, 13(12):2343.
|
[68] |
LU T M, GAO H T, LÜ S J, et al. The transient electromagnetic response of UXO in complex three-dimensional terrain[J]. IEEE Earth Observations and Remote Sensing, 2023, 17(99):1-11.
|
[69] |
XIE W P, ZHANG X J, MU Y X. A novel 3-D imaging method for subsurface targets based on time-domain electromagnetic induction system[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6):938-942.
|
[70] |
LIU H, ZHAO C F, ZHU J X, et al. Active detection of small UXO-like targets through measuring electromagnetic responses with a magneto-inductive sensor array[J]. IEEE Sensors, 2021, 21(20):23558-23567.
|
[71] |
CHEN S D, ZHANG S, JIANG H J, et al. Location and characterization of unexploded ordnance-like targets with a portable transient electromagnetic system[J]. IEEE Access, 2020, 8(8):150174-150185.
|
[72] |
张勇, 肖正明, 段浩, 等. 水下中远场爆炸冲击波作用下航行体表面动态响应分析[J]. 兵工学报, 2024, 45(7):2341-2350.
doi: 10.12382/bgxb.2023.0306
|
|
ZHANG Y, XIAO Z M, DUAN H, et al. Analysis of surface dynamic response of underwater medium and far field explosion under shock wave[J]. Acta Armamentarii, 2024, 45(7):2341-2350. (in Chinese)
doi: 10.12382/bgxb.2023.0306
|
[73] |
SONG Y L, DARZIKOLAEI S A M, LIU X F. Scour around underwater unexploded ordnances (UXOs):an experimental and computational investigation[J]. Ocean Engineering, 2022, 262(10):112146.
|
[74] |
SONG Y L, XU Y C, ISMAIL H, et al. Scour modeling based on immersed boundary method:a pathway to practical use of three-dimensional scour models[J]. Coastal Engineering, 2021, 171(1):104037.
|
[75] |
李旭, 岳松林, 邱艳宇, 等. 近场水下爆炸气泡与混凝土组合板相互作用的试验研究[J]. 兵工学报, 2023, 44(增刊1):79-89.
|
|
LI X, YUE S L, QIU Y Y, et al. Experimental study on interaction between bubble and concrete composite plate in near-field underwater explosion[J]. Acta Armamentarii, 2023, 44(S1):79-89. (in Chinese)
doi: 10.12382/bgxb.2023.1074
|
[76] |
常文平, 杜仕国, 江劲勇, 等. 国外废弃含能材料非含能化处理技术的现状[J]. 河北化工, 2010, 33(11):26-28.
|
|
CHANG W P, DU S G, JIANG J Y, et al. Current status of non-energetic treatment technology for waste energetic materials abroad[J]. Hebei Chemical Industry, 2010, 33(11):26-28. (in Chinese)
|
[77] |
姜金佐, 徐翔云, 任王军, 等. 战斗部动态爆炸破片威力场综述[J]. 兵工学报, 2023, 44(增刊1):1-8.
|
|
JIANG J Z, XU X Y, REN W J, et al. Summary of dynamic explosive fragment power field of warhead[J]. Acta Armamentarii, 2023, 44(S1):1-8. (in Chinese)
|
[78] |
李金明, 王国栋, 张玉令, 等. 报废弹药拆卸销毁安全性探讨[J]. 工程爆破, 2016, 22(1):46-48.
|
|
LI J M, WANG G D, ZHANG Y L, et al. Discussion on safety of disassembly and destruction of abandoned munitions[J]. Engineering Blasting, 2016, 22(1):46-48. (in Chinese)
|
[79] |
曹海庆, 刘万波, 白冬龙. 报废弹药销毁处理的安全防范措施[J]. 价值工程, 2012, 31(28):320-321.
|
|
CAO H Q, LIU W B, BAI D L. Safety precautions for disposal of discarded munitions[J]. Value Engineering, 2012, 31(28):320-321. (in Chinese)
|
[80] |
ZHANG L X, GAO H T, DU J, et al. Detecting the transient electromagnetic characteristic response of unexploded ordnance buried in the seafloor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024,(62):1-16.
|
[81] |
杨磊, 刘瀚, 黄广炎, 等. 典型防爆装备对TNT爆炸冲击波的防护性能[J]. 兵工学报, 2023, 44(10):2871-2884.
doi: 10.12382/bgxb.2023.0281
|
|
YANG L, LIU H, HUANG G Y, et al. Protection performance of typical explosion-proof equipment against TNT explosion shock wave[J]. Acta Armamentarii, 2023, 44(10):2871-2884. (in Chinese)
doi: 10.12382/bgxb.2023.0281
|
[82] |
郗文博, 同剑, 赵云涛, 等. 便携式非接触聚能射流引爆器销毁废旧弹药[J]. 工程爆破, 2020, 26(3):75-78.
|
|
XI W B, TONG J, ZHAO Y T, et al. Portable non-contact shaped jet detonator destroys spent munitions[J]. Engineering Blasting, 2020, 26(3):75-78. (in Chinese)
|
[83] |
王斌, 林大能, 马海鹏, 等. 废旧炸弹爆炸销毁的安全技术[C]// 第九届全国工程爆破学术会议论文集.青岛, 山东: 中国工程爆破协会和中国力学学会, 2024:893-898.
|
|
WANG B, LIN D N, MA H P, et al. Safety technology of explosive destruction of used bombs[C]// Proceedings of the 9th National Conference on Engineering Blasting.Qingdao, Shandong: China Engineering Blasting Association and Chinese Mechanics Society, 2024,893-898. (in Chinese)
|
[84] |
宋桂飞, 李良春, 王韶光, 等. 激光销毁危险爆炸物应用研究进展[J]. 激光与红外, 2014, 44(10):1075-1078.
|
|
SONG G F, LI L C, WANG S G, et al. Research progress of laser destruction of dangerous explosives[J]. Laser & Infrared, 2014, 44(10):1075-1078. (in Chinese)
|
[85] |
伍凌川, 雷林, 张博, 等. 废旧弹箭高压水射流处理技术国外应用现状[J]. 兵工自动化, 2016, 35(10):77-79.
|
|
WU L C, LEI L, ZHANG B, et al. Foreign application status of high pressure water jet treatment technology for spent projectiles and arrows[J]. Ordnance Industry Automation, 2016, 35(10):77-79. (in Chinese)
|
[86] |
李全俊, 王国辉, 雷林, 等. 废旧弹药拆分技术现状与发展[J]. 兵工自动化, 2018, 37(5):93-96.
|
|
LI Q J, WANG G H, LEI L, et al. Current situation and development of waste ammunition splitting technology[J]. Ordnance Automation, 2018, 37(5):93-96. (in Chinese)
|
[87] |
TALAWAR M, JANGID S, NATH T, et al. New directions in the science and technology of advanced sheet explosive formulations and the key energetic materials used in the processing of sheet explosives:Emerging trends[J]. Journal of Hazardous Materials, 2015, 300(7):307-321.
|
[88] |
巩铭扬, 黄鑫, 严良俊, 等. 基于多频电磁法水下目标体探测能力分析[J]. 地球物理学进展, 2015, 7(13):1-13.
|
|
GONG M Y, HUANG X, YAN L J, et al. Analysis of underwater target detection capability based on multi-frequency electromagnetic method[J]. Progress in Geophysics, 2015, 7(13):1-13. (in Chinese)
|
[89] |
夏福君, 宋桂飞, 肖东胜, 等. 报废弹药绿色无害化处理技术发展思路探讨[J]. 兵工自动化, 2011, 30(5):94-96.
|
|
XIA F J, SONG G F, XIAO D S, et al. Discussion on the development of green harmless treatment technology for discarded ammunition[J]. Ordnance Automation, 2011, 30(5):94-96. (in Chinese)
|
[90] |
王东生, 王方晓. 爆炸作业从野外转变到室内的有关经验[J]. 安全与环境学报, 2004, 4(增刊1):122-123.
|
|
WANG D S, WANG F X. Experience of explosive operation from field to indoor[J]. Journal of Safety and Environment, 2004, 4(S1):122-123. (in Chinese)
|
[91] |
张怀智, 徐建国, 刘鹏, 等. 报废弹药冷冻处理法及关键技术[J]. 四川兵工学报, 2009, 30(3):103-104.
|
|
ZHANG H Z, XU J G, LIU P, et al. Freezing treatment of scrap ammunition and its key Technologies[J]. Sichuan Ordnance Engineering Journal, 2009, 30(3):103-104. (in Chinese)
|
[92] |
钟树良, 李振泉, 柏平, 等. 水射流切割炸药的安全性及试验研究[J]. 四川兵工学报, 2006(3):44-46.
|
|
ZHONG S L, LI Z Q, BAI P, et al. Safety and experimental study of water jet cutting explosive[J]. Sichuan Ordnance Engineering Journal, 2006(3):44-46. (in Chinese)
|
[93] |
张国文, 陈新发. 炸药模拟件水射流切割参数的试验研究[J]. 含能材料, 2001, 9(1):24-27.
|
|
ZHANG G W, CHEN X F. Experimental study on water jet cutting parameters of explosive simulators[J]. Energetic Materials, 2001, 9(1):24-27. (in Chinese)
|
[94] |
张世林, 周春桂, 王志军, 等. 一种新型水射流切割器成型的仿真研究[J]. 爆破器材, 2011, 40(2):5-7.
|
|
ZHANG S L, ZHOU C G, WANG Z J, et al. Simulation study on forming of a new type of water jet cutter[J]. Explosive Materials, 2011, 40(2):5-7. (in Chinese)
|
[95] |
邓松圣, 戴飞, 庞成, 等. 磨料水射流切割技术在煤矿生产中的安全应用探讨[J]. 矿业安全与环保, 2023, 50(1):115-118.
|
|
DENG S S, DAI F, PANG C, et al. Discussion on safety application of abrasive water jet cutting technology in coal mine production[J]. Mining Safety and Environmental Protection, 2023, 50(1):115-118. (in Chinese)
|
[96] |
APARECIDA O, ROBERTO L, CLAUDIA B. Pb adsorption on soil typical to an ammunition destruction site[J]. Bulletin of environmental contamination and toxicology, 2018, 101(3):365-371.
doi: 10.1007/s00128-018-2403-8
pmid: 30120504
|
[97] |
张致豪. 弹药销毁固体废渣再利用研究[D]. 沈阳: 沈阳理工大学, 2020.
|
|
ZHANG Z H. Research on reuse of solid residue from ammunition destruction[D]. Shenyang: Shenyang Ligong University, 2020. (in Chinese)
|