
兵工学报 ›› 2025, Vol. 46 ›› Issue (S1): 240619-.doi: 10.12382/bgxb.2024.0619
闫昊1, 李思雨1,*(
), 展先彪2, 董恩志1, 温亮1, 贾希胜1,**(
)
收稿日期:2024-07-23
上线日期:2025-11-06
通讯作者:
YAN Hao1, LI Siyu1,*(
), ZHAN Xianbiao2, DONG Enzhi1, WEN Liang1, JIA Xisheng1,**(
)
Received:2024-07-23
Online:2025-11-06
摘要:
滚动轴承是大量旋转机械中的关键部件,其剩余使用寿命(Remaining Useful Life,RUL)预测问题关系到设备能否安全稳定运行。为解决目前RUL预测精度低的问题,提出一种在频域上结合时间卷积自编码器(Temporal Convolutional Autoencoder,TCAE)和Informer网络的滚动轴承RUL预测方法(TCAE-Informer)。所提方法设计了一种TCAE,面向滚动轴承不同时间样本的频域信号,自适应地挖掘更能反映滚动轴承全寿命退化周期的深度特征;搭建起一个Informer网络模型,借助其在长序列信息上的学习优势,有效拟合出深度特征与滚动轴承RUL的映射关系,进而实现滚动轴承RUL预测功能。使用XJTU-SY轴承数据集的对比验证,对照3种RUL预测结果评价指标,所提方法在不同的工况条件下,相比现有的多种方法均能够实现较为准确的RUL预测效果,证明了所提方法具有优越的RUL预测能力和泛化能力。针对不同方法进行了抗干扰测试,所提方法在不同噪声条件下均展现出了更优的RUL预测效果,证明了所提方法具有良好的RUL预测抗干扰能力。
中图分类号:
闫昊, 李思雨, 展先彪, 董恩志, 温亮, 贾希胜. 基于频域TCAE-Informer的滚动轴承剩余使用寿命预测方法[J]. 兵工学报, 2025, 46(S1): 240619-.
YAN Hao, LI Siyu, ZHAN Xianbiao, DONG Enzhi, WEN Liang, JIA Xisheng. Remaining Useful Life Prediction Method of Rolling Bearing Based on Frequency-domain TCAE-Informer[J]. Acta Armamentarii, 2025, 46(S1): 240619-.
| 工况编号 | 转速/rpm | 径向力/kN |
|---|---|---|
| 1 | 2100 | 12 |
| 2 | 2250 | 11 |
| 3 | 2400 | 10 |
表1 试验工况设置
Table 1 Test condition setting
| 工况编号 | 转速/rpm | 径向力/kN |
|---|---|---|
| 1 | 2100 | 12 |
| 2 | 2250 | 11 |
| 3 | 2400 | 10 |
| 工况编号 | 轴承编号 | 样本数量 | 实际寿命 |
|---|---|---|---|
| 1 | Bearing 1_1 | 123 | 2h 3min |
| Bearing 1_2 | 161 | 2h 41min | |
| Bearing 1_3 | 158 | 2h 38min | |
| Bearing 1_4 | 122 | 2h 2min | |
| Bearing 1_5 | 52 | 52min | |
| 2 | Bearing 2_1 | 491 | 8h 11min |
| Bearing 2_2 | 161 | 2h 41min | |
| Bearing 2_3 | 533 | 8h 53min | |
| Bearing 2_4 | 42 | 42min | |
| Bearing 2_5 | 339 | 5h 39min | |
| 3 | Bearing 3_1 | 2538 | 42h 18min |
| Bearing 3_2 | 2496 | 41h 36min | |
| Bearing 3_3 | 371 | 6h 11min | |
| Bearing 3_4 | 1515 | 25h 15min | |
| Bearing 3_5 | 114 | 1h 54min |
表2 各轴承数据集信息
Table 2 Information for each bearing data set
| 工况编号 | 轴承编号 | 样本数量 | 实际寿命 |
|---|---|---|---|
| 1 | Bearing 1_1 | 123 | 2h 3min |
| Bearing 1_2 | 161 | 2h 41min | |
| Bearing 1_3 | 158 | 2h 38min | |
| Bearing 1_4 | 122 | 2h 2min | |
| Bearing 1_5 | 52 | 52min | |
| 2 | Bearing 2_1 | 491 | 8h 11min |
| Bearing 2_2 | 161 | 2h 41min | |
| Bearing 2_3 | 533 | 8h 53min | |
| Bearing 2_4 | 42 | 42min | |
| Bearing 2_5 | 339 | 5h 39min | |
| 3 | Bearing 3_1 | 2538 | 42h 18min |
| Bearing 3_2 | 2496 | 41h 36min | |
| Bearing 3_3 | 371 | 6h 11min | |
| Bearing 3_4 | 1515 | 25h 15min | |
| Bearing 3_5 | 114 | 1h 54min |
| 工况编号 | 训练集 | 测试集 |
|---|---|---|
| 1 | Bearing1_1,Bearing1_3, Bearing1_4,Bearing1_5 | Bearing1_2 |
| 2 | Bearing2_1,Bearing2_2, Bearing2_4,Bearing2_5 | Bearing2_3 |
| 3 | Bearing3_1,Bearing3_2, Bearing3_3,Bearing3_5 | Bearing3_4 |
表3 各工况数据集划分
Table 3 The division of data set for each working condition
| 工况编号 | 训练集 | 测试集 |
|---|---|---|
| 1 | Bearing1_1,Bearing1_3, Bearing1_4,Bearing1_5 | Bearing1_2 |
| 2 | Bearing2_1,Bearing2_2, Bearing2_4,Bearing2_5 | Bearing2_3 |
| 3 | Bearing3_1,Bearing3_2, Bearing3_3,Bearing3_5 | Bearing3_4 |
| 序号 | 特征 | 特征类型 | 特征维度 |
|---|---|---|---|
| 特征1 | 时域特征 | 均值、峰峰值、均方根值、标准差、峭度、偏度 | 6 |
| 特征2 | 频域特征 | 中心频率、平均频率、均方根频率、频率方差 | 4 |
| 特征3 | TCAE提取特征 | - | 4 |
| 特征4 | FFT-TCAE提取特征 | - | 3 |
表4 对比特征类型
Table 4 Types of features used for comparison
| 序号 | 特征 | 特征类型 | 特征维度 |
|---|---|---|---|
| 特征1 | 时域特征 | 均值、峰峰值、均方根值、标准差、峭度、偏度 | 6 |
| 特征2 | 频域特征 | 中心频率、平均频率、均方根频率、频率方差 | 4 |
| 特征3 | TCAE提取特征 | - | 4 |
| 特征4 | FFT-TCAE提取特征 | - | 3 |
| 轴承编号 | 特征 | MAE | RMSE | R2 |
|---|---|---|---|---|
| Bearing 1_2 | 特征1 | 0.216074 | 0.249923 | 0.259717 |
| 特征2 | 0.082440 | 0.10453 | 0.870502 | |
| 特征3 | 0.049036 | 0.057398 | 0.960954 | |
| 特征4 | 0.040537 | 0.044372 | 0.976665 | |
| Bearing 2_3 | 特征1 | 0.099399 | 0.116501 | 0.837739 |
| 特征2 | 0.071316 | 0.084402 | 0.914836 | |
| 特征3 | 0.056997 | 0.074692 | 0.933304 | |
| 特征4 | 0.043014 | 0.060944 | 0.955596 | |
| Bearing 3_4 | 特征1 | 0.054934 | 0.109860 | 0.855361 |
| 特征2 | 0.091488 | 0.101833 | 0.875724 | |
| 特征3 | 0.019162 | 0.022911 | 0.993709 | |
| 特征4 | 0.017397 | 0.019611 | 0.995391 |
表5 使用不同特征时的RUL预测结果评价指标
Table 5 Assessment metrics for RUL prediction results when using different features
| 轴承编号 | 特征 | MAE | RMSE | R2 |
|---|---|---|---|---|
| Bearing 1_2 | 特征1 | 0.216074 | 0.249923 | 0.259717 |
| 特征2 | 0.082440 | 0.10453 | 0.870502 | |
| 特征3 | 0.049036 | 0.057398 | 0.960954 | |
| 特征4 | 0.040537 | 0.044372 | 0.976665 | |
| Bearing 2_3 | 特征1 | 0.099399 | 0.116501 | 0.837739 |
| 特征2 | 0.071316 | 0.084402 | 0.914836 | |
| 特征3 | 0.056997 | 0.074692 | 0.933304 | |
| 特征4 | 0.043014 | 0.060944 | 0.955596 | |
| Bearing 3_4 | 特征1 | 0.054934 | 0.109860 | 0.855361 |
| 特征2 | 0.091488 | 0.101833 | 0.875724 | |
| 特征3 | 0.019162 | 0.022911 | 0.993709 | |
| 特征4 | 0.017397 | 0.019611 | 0.995391 |
| 轴承编号 | 预测网络 | MAE | RMSE | R2 | |||
|---|---|---|---|---|---|---|---|
| Bearing 1_2 | LSTM | 0.106740 | ±0.02357 | 0.134373 | ±0.01356 | 0.786001 | ±0.12002 |
| GRU | 0.105749 | ±0.02176 | 0.134981 | ±0.02953 | 0.784061 | ±0.08269 | |
| CNN | 0.137820 | ±0.02959 | 0.163573 | ±0.03533 | 0.682889 | ±0.06599 | |
| Transformer | 0.085879 | ±0.01131 | 0.100737 | ±0.00613 | 0.879728 | ±0.04678 | |
| Informer | 0.040537 | ±0.00921 | 0.044372 | ±0.00501 | 0.976665 | ±0.03589 | |
| Bearing 2_3 | LSTM | 0.053179 | ±0.01136 | 0.087771 | ±0.01761 | 0.907900 | ±0.04066 |
| GRU | 0.081477 | ±0.01815 | 0.085761 | ±0.01656 | 0.912071 | ±0.03617 | |
| CNN | 0.087212 | ±0.00756 | 0.099645 | ±0.01133 | 0.881297 | ±0.04521 | |
| Transformer | 0.045725 | ±0.00307 | 0.064627 | ±0.00580 | 0.950068 | ±0.01069 | |
| Informer | 0.043014 | ±0.00294 | 0.060944 | ±0.00411 | 0.955596 | ±0.00632 | |
| Bearing 3_4 | LSTM | 0.040815 | ±0.01469 | 0.048549 | ±0.02188 | 0.971754 | ±0.03712 |
| GRU | 0.063935 | ±0.01584 | 0.077119 | ±0.02832 | 0.928726 | ±0.05996 | |
| CNN | 0.096545 | ±0.01488 | 0.116588 | ±0.01165 | 0.837103 | ±0.04941 | |
| Transformer | 0.023137 | ±0.00962 | 0.034353 | ±0.00704 | 0.985857 | ±0.01509 | |
| Informer | 0.017397 | ±0.00747 | 0.019611 | ±0.00335 | 0.995391 | ±0.00670 | |
表6 不同预测网络的RUL预测结果评价指标
Table 6 Assessment metrics of RUL prediction results in different prediction networks
| 轴承编号 | 预测网络 | MAE | RMSE | R2 | |||
|---|---|---|---|---|---|---|---|
| Bearing 1_2 | LSTM | 0.106740 | ±0.02357 | 0.134373 | ±0.01356 | 0.786001 | ±0.12002 |
| GRU | 0.105749 | ±0.02176 | 0.134981 | ±0.02953 | 0.784061 | ±0.08269 | |
| CNN | 0.137820 | ±0.02959 | 0.163573 | ±0.03533 | 0.682889 | ±0.06599 | |
| Transformer | 0.085879 | ±0.01131 | 0.100737 | ±0.00613 | 0.879728 | ±0.04678 | |
| Informer | 0.040537 | ±0.00921 | 0.044372 | ±0.00501 | 0.976665 | ±0.03589 | |
| Bearing 2_3 | LSTM | 0.053179 | ±0.01136 | 0.087771 | ±0.01761 | 0.907900 | ±0.04066 |
| GRU | 0.081477 | ±0.01815 | 0.085761 | ±0.01656 | 0.912071 | ±0.03617 | |
| CNN | 0.087212 | ±0.00756 | 0.099645 | ±0.01133 | 0.881297 | ±0.04521 | |
| Transformer | 0.045725 | ±0.00307 | 0.064627 | ±0.00580 | 0.950068 | ±0.01069 | |
| Informer | 0.043014 | ±0.00294 | 0.060944 | ±0.00411 | 0.955596 | ±0.00632 | |
| Bearing 3_4 | LSTM | 0.040815 | ±0.01469 | 0.048549 | ±0.02188 | 0.971754 | ±0.03712 |
| GRU | 0.063935 | ±0.01584 | 0.077119 | ±0.02832 | 0.928726 | ±0.05996 | |
| CNN | 0.096545 | ±0.01488 | 0.116588 | ±0.01165 | 0.837103 | ±0.04941 | |
| Transformer | 0.023137 | ±0.00962 | 0.034353 | ±0.00704 | 0.985857 | ±0.01509 | |
| Informer | 0.017397 | ±0.00747 | 0.019611 | ±0.00335 | 0.995391 | ±0.00670 | |
| 轴承编号 | 噪声功率 | Transformer | Informer | ||||
|---|---|---|---|---|---|---|---|
| MAE | RMSE | R2 | MAE | RMSE | R2 | ||
| Bearing 1_2 | 未添加 | 0.085879 | 0.100737 | 0.879728 | 0.040537 | 0.044372 | 0.97666 |
| 0.2 | 0.106615 | 0.119414 | 0.830994 | 0.053673 | 0.061721 | 0.95485 | |
| 0.4 | 0.123206 | 0.160631 | 0.694194 | 0.077824 | 0.090635 | 0.90264 | |
| Bearing 2_3 | 未添加 | 0.045725 | 0.064627 | 0.950068 | 0.043014 | 0.060944 | 0.955596 |
| 0.2 | 0.067412 | 0.085884 | 0.911818 | 0.058191 | 0.077010 | 0.929099 | |
| 0.4 | 0.086075 | 0.100586 | 0.879043 | 0.066119 | 0.093429 | 0.902107 | |
| Bearing 3_4 | 未添加 | 0.023137 | 0.034353 | 0.985857 | 0.017397 | 0.019611 | 0.995391 |
| 0.2 | 0.056836 | 0.067678 | 0.945108 | 0.025413 | 0.029313 | 0.985529 | |
| 0.4 | 0.073950 | 0.082457 | 0.899738 | 0.046064 | 0.045432 | 0.968690 | |
表7 不同噪声功率下轴承的RUL预测结果评价指标
Table 7 Assessment metrics for RUL prediction results of bearings under different noise powers
| 轴承编号 | 噪声功率 | Transformer | Informer | ||||
|---|---|---|---|---|---|---|---|
| MAE | RMSE | R2 | MAE | RMSE | R2 | ||
| Bearing 1_2 | 未添加 | 0.085879 | 0.100737 | 0.879728 | 0.040537 | 0.044372 | 0.97666 |
| 0.2 | 0.106615 | 0.119414 | 0.830994 | 0.053673 | 0.061721 | 0.95485 | |
| 0.4 | 0.123206 | 0.160631 | 0.694194 | 0.077824 | 0.090635 | 0.90264 | |
| Bearing 2_3 | 未添加 | 0.045725 | 0.064627 | 0.950068 | 0.043014 | 0.060944 | 0.955596 |
| 0.2 | 0.067412 | 0.085884 | 0.911818 | 0.058191 | 0.077010 | 0.929099 | |
| 0.4 | 0.086075 | 0.100586 | 0.879043 | 0.066119 | 0.093429 | 0.902107 | |
| Bearing 3_4 | 未添加 | 0.023137 | 0.034353 | 0.985857 | 0.017397 | 0.019611 | 0.995391 |
| 0.2 | 0.056836 | 0.067678 | 0.945108 | 0.025413 | 0.029313 | 0.985529 | |
| 0.4 | 0.073950 | 0.082457 | 0.899738 | 0.046064 | 0.045432 | 0.968690 | |
| [1] |
许晓东, 唐圣金, 谢建, 等. 随机退化应力作用下设备剩余寿命预测方法[J]. 兵工学报, 2022, 43(3):712-719.
doi: 10.12382/bgxb.2021.0018 |
|
doi: 10.12382/bgxb.2021.0018 |
|
| [2] |
李泽东, 李志农, 陶俊勇, 等. 基于特征融合的注意力增强卷积神经网络的航空发动机滚动轴承故障诊断方法[J]. 兵工学报, 2022, 43(12):3228-3239.
|
|
|
|
| [3] |
郭玉荣, 茅健, 赵嫚. 基于CNN与注意力BiLSTM的轴承剩余使用寿命预测方法[J]. 上海工程技术大学学报, 2023, 37(1):96-104.
|
|
|
|
| [4] |
|
| [5] |
邱佩臻, 吴东燃, 夏艺, 等. 循环神经网络在剩余使用寿命预测中的应用综述[J]. 现代信息科技, 2023, 7(24):61-66.
|
|
|
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
周哲韬, 刘路, 宋晓, 等. 基于Transformer模型的滚动轴承剩余使用寿命预测方法[J]. 北京航空航天大学学报, 2023, 49(2):430-443.
|
|
|
|
| [11] |
马依琳, 陶慧玲, 董启文, 等. 基于Transformer的多特征融合的航空发动机剩余使用寿命预测[J]. 华东师范大学学报(自然科学版), 2022(5):219-232.
|
|
|
|
| [12] |
|
| [13] |
邓飞跃, 陈哲, 郝如江. 基于MsTCN-Transformer模型的轴承剩余使用寿命预测研究[J]. 振动与冲击, 2024, 43(4):279-287.
|
|
|
|
| [14] |
|
| [15] |
陈哲. 基于长时间序列分析的滚动轴承剩余使用寿命预测方法研究[D]. 石家庄: 石家庄铁道大学, 2023.
|
|
|
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16):1-6.
doi: 10.3901/JME.2019.16.001 |
|
|
|
| [20] |
颜家威, 易灿灿, 黄涛, 等. 基于CSPA-Informer的滚动轴承剩余寿命预测[J]. 组合机床与自动化加工技术, 2023(10):85-90.
|
|
|
|
| [21] |
葛阳, 郭兰中, 牛曙光, 等. 基于t-SNE和LSTM的旋转机械剩余寿命预测[J]. 振动与冲击, 2020, 39(7):223-231,273.
|
|
|
| [1] | 冯毓庆, 郑长松, 于亮, 张丁戈, 张金乐, 张玉东. 基于公共变量的双变量逆高斯过程的湿式离合器RUL预测[J]. 兵工学报, 2025, 46(S1): 241043-. |
| [2] | 李泽东, 李志农, 陶俊勇, 毛清华, 张旭辉. 基于特征融合的注意力增强卷积神经网络的航空发动机滚动轴承故障诊断方法[J]. 兵工学报, 2022, 43(12): 3228-3239. |
| [3] | 李志农, 胡志峰, 毛清华, 张旭辉, 陶俊勇. 非线性调频模态分解-同步提取变换方法及其在滚动轴承故障诊断中的应用[J]. 兵工学报, 2021, 42(6): 1324-1330. |
| [4] | 黄大荣, 陈长沙, 柯兰艳, 赵玲, 米波, 孙国玺. 误差影响下滚动轴承多重故障模态特征信号的盲源分离方法[J]. 兵工学报, 2018, 39(7): 1419-1428. |
| [5] | 王冰, 李洪儒, 陈强华, 许葆华. 基于数学形态分形维数与模糊C均值聚类的滚动轴承退化状态识别[J]. 兵工学报, 2015, 36(10): 1982-1990. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010802024360号 京ICP备05059581号-4