欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2014, Vol. 35 ›› Issue (8): 1267-1274.doi: 10.3969/j.issn.1000-1093.2014.08.020

• 论文 • 上一篇    下一篇

航空发动机涡轮叶片裂纹检测信号特征提取

于霞1, 张卫民1, 邱忠超1, 陈国龙1, 赵敦慧2   

  1. (1.北京理工大学 机械与车辆学院北京 100081;2.中国兵器工业导航与控制技术研究所北京 100089)
  • 收稿日期:2013-09-22 修回日期:2013-09-22 上线日期:2014-11-03
  • 作者简介:于霞(1977—),女,副教授
  • 基金资助:
    总装备部“十二五”预先研究项目(051317030204)

Signal Feature Extraction of Aero-engine Turbine Blade Crack Detection

YU Xia1, ZHANG Wei-min1, QIU Zhong-chao1, CHEN Guo-long1, ZHAO Dun-hui2   

  1. (1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081,China;2.Navigation and Control Technology Research Institute, China North Industries Group Corporation, Beijing 100089,China)
  • Received:2013-09-22 Revised:2013-09-22 Online:2014-11-03

摘要: 航空发动机涡轮叶片是高精密重要器件,其表面微裂纹检测属于不规则曲面检测的一种,是无损检测领域研究的热点和难点。考虑到涡流检测的特有优势,设计了一种不同于传统方式的简单实用且有效的差激励涡流探头,实现对涡轮叶片预制微裂纹的识别。由于叶片表面为曲率变化的弧面,检测过程难免会发生提离,因此获得的检测信号中包含噪声和多个奇异点等多种干扰因素。为保证缺陷位置重要信息不丢失,采用镜像延拓经验模态分解(EMD)重构与小波奇异性检测相结合的方法对得到的微裂纹信号进行处理,滤除了非裂纹位置的多处畸变点影响,有效准确地实现了叶片微裂纹位置的判定。实验结果表明,该方法可以有效降低检测信号的噪声和干扰,准确提取裂纹信号特征信息,对飞机涡轮叶片类零件微缺陷的早期检测和完整有效性评估具有一定的借鉴意义。

关键词: 航空、航天系统工程, 航空发动机涡轮叶片, 微裂纹, 镜像延拓经验模态分解, 小波奇异性

Abstract: The aero-engine turbine blade is a high precision part. Blade surface crack detection belongs to an irregular surface detection, and is a hotspot and difficulty in the field of non-destructive testing. Taking the unique advantage of eddy current testing into account, a simple,practical and effective differential incentive eddy current probe is designed to detect the prefabricated micro-cracks of aero-engine turbine blades. Since the surface curvature of turbine blade varies, the lift-off effect exists inevitably in the detection process. Therefore, the test results of the detection signal contain noise and multiple singular points. In order to ensure that the important information of defect location is not lost, the combination of the mirror extension empirical mode decomposition(EMD)reconstruction and wavelet singularity detection method is used to process the detected micro-crack signals, filter out the influence of several distortion points on non-cracked positions, and achieve an accurate and effective determination of the micro-crack position of turbine blade. The results show that the method can effectively reduce the noise and interference of detection signal, and extract accurately the feature information of crack signal.

Key words: aerospace system engineering, aero-engine turbine blade, micro-crack, mirror extension EMD, wavelet singularity

中图分类号: