[1] 彭玉华. 小波变换与工程应用[M]. 北京:科学出版社,1999:1-137. PENG Yu-hua. Wavelet transform and application[M]. Beijing:Science Press,1999:1-137. (in Chinese) [2] Driesen J, Graeenbroeck T V, Reekmans R, et al. Analyzing time-varying system harmonics using wavelet transform[C]∥IEEE Instrumentation and Measurement Technology Conference. Brussels: IEEE Press, 1996: 474-479. [3] Mallat S G. A theory for multi-resolution signal decomposition: the wavelet representation[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693. [4] Chipman H A, Kolacxyk E D, McCulloch R E. Adaptive Bayesian wavelet shrinkage[J]. Journal of American Statistical Association, 1997, 92(440):1413-1421. [5] Portilla J, Strela V, Wainwright M J, et al. Adaptive wiener denoising using a Gaussian scale mixture model in the wavelet domain[J]. IEEE International Conference on Image Processing, 2001, 2:37-40. [6] Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Trans Image Processing, 2003,12(11): 1338-1351. [7] Donoho D L, De-noising by soft-thresholding[J]. IEEE Trans Inform Theory, 1995,41(3):613-627. [8] 张文娟, 周丹丹, 王林. 小波阈值去噪的一种改进方案[J]. 电脑开发与应用,2007,20(9):28-29. ZHANG Wen-juan,ZHOU Dan-dan, WANG Lin. A modified method of wavelet thresholding denoising[J]. The Development and Application of Computer, 2007, 20(1):28-29. (in Chinese) [9] 吴祈宗. 运筹学与最优化方法[M]. 北京:机械工业出版社,2003:95-97. WU Qi-zong. Operations research and optimization[M]. Beijing: Machinery Industry Press,2003:95-97. (in Chinese) [10] Donoho D L,Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81:425-455. [11] Chang S G, Bin Yu, Vetterli M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Trans Image Processing, 2000, 9(9):1532-1546. |