| [1] |
李磊, 杜度, 仝哲, 等. 国外舰艇装备数字孪生技术应用研究[J]. 舰船科学技术, 2024, 46(19):185-189.
|
|
LI L, DU D, TONG Z, et al. Research on the application of digital twin technology in foreign naval equipment[J]. Ship Science and Technology, 2024, 46(19):185-189. (in Chinese)
|
| [2] |
盛碧琦, 孙盛智, 刘玉, 等. 数字孪生技术在模拟训练系统中的应用研究[J]. 战术导弹技术, 2024(4):152-160.
|
|
SHENG B Q, SUN S Z, LIU Y, et al. Research on the application of digital twin technology in simulation training systems[J]. Tactical Missile Technology, 2024(4):152-160. (in Chinese)
|
| [3] |
熊宇涵, 李雄. 数字孪生战场:概念、架构与技术[J]. 系统工程与电子技术, 2025, 47(1):141-152.
doi: 10.12305/j.issn.1001-506X.2025.01.15
|
|
XIONG Y H, LI X. Digital twin battlefield:concept,architecture,and technology[J]. Systems Engineering and Electronics, 2025, 47(1):141-152. (in Chinese)
|
| [4] |
洪东跑, 方伟光, 李浩, 等. 面向智能运维的装备数字孪生体构建与应用研究[J]. 宇航学报, 2024, 45(6):854-865.
|
|
HONG D P, FANG W G, LI H, et al. Research on the construction and application of equipment digital twin for intelligent maintenance[J]. Journal of Astronautics, 2024, 45(6):854-865. (in Chinese)
|
| [5] |
顾晓飞, 张亮, 彭小明, 等. 数字孪生技术在导弹战斗部领域的应用与展望[J]. 新技术新工艺, 2024(9):1-7.
|
|
GU X F, ZHANG L, PENG X M, et al. Application and prospect of digital twin technology in missile warhead[J]. New Technology & New Process, 2024(9):1-7. (in Chinese)
|
| [6] |
曹渊, 邱志明, 郝坤鹏, 等. 小口径转管炮数字化技术发展综述[J]. 海军工程大学学报, 2023, 35(6):6-10.
|
|
CAO Y, QIU Z M, HAO K P, et al. Review on the development of digital technology for small-caliber gatling guns[J]. Journal of Naval University of Engineering, 2023, 35(6):6-10. (in Chinese)
|
| [7] |
闫仲秋, 陈义平, 邵奇, 等. 基于数字工程的武器装备发展研究[J]. 兵工自动化, 2023, 42(5):92-96.
|
|
YAN Z Q, CHEN Y P, SHAO Q, et al. Research on weapon equipment development based on digital engineering[J]. Ordnance Industry Automation, 2023, 42(5):92-96. (in Chinese)
|
| [8] |
朱金达, 陈佳辉, 秦志英, 等. 基于虚拟现实与数字孪生技术的自行火炮辅助维修系统[J]. 数字印刷, 2022(6):117-127.
|
|
ZHU J D, CHEN J H, QIN Z Y, et al. Self-propelled artillery auxiliary maintenance system based on virtual reality and digital twin technology[J]. Digital Printing, 2022(6):117-127. (in Chinese)
|
| [9] |
王帅, 王亚彬, 岳帅, 等. 自行火炮维修保障系统数字孪生体仿真模型[J]. 火炮发射与控制学报, 2023, 172(2):8-13,45
|
|
WANG S, WANG Y B, YUE S, et al. A digital twin simulation model of the self-propelled artillery maintenance support system[J]. Journal of Gun Launch & Control, 2023, 172(2):8-13,45 (in Chinese)
|
| [10] |
马佳瑞. 基于数字孪生的转管火炮发射状态监测系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
|
|
MA J R. Research on gatling gun condition monitoring system based on digital twin[D]. Harbin: Harbin Engineering University, 2022. (in Chinese)
|
| [11] |
王宏伟, 刘文军, 邓伟倩, 等. 基于模型的复杂装备数字孪生体建模方法[J]. 新技术新工艺, 2024(5):51-59.
|
|
WANG H W, LIU W J, DENG W Q, et al. Digital twin modeling method for complex equipment based on model[J]. New Technology & New Process, 2024(5):51-59. (in Chinese)
|
| [12] |
王韫泽, 王树山, 魏平亮, 等. 穿甲弹异物阻滞膛炸机理数值仿真分析[J]. 兵工学报, 2018, 39(5):859-866.
doi: 10.3969/j.issn.1000-1093.2018.05.004
|
|
WANG Y Z, WANG S S, WEI P L, et al. Numerical simulation analysis of bore explosion mechanism caused by foreign object obstruction in armor-piercing projectiles[J]. Acta Armamentarii, 2018, 39(5):859-866. (in Chinese)
|
| [13] |
毛保全, 赵其进, 白向华, 等. 火炮身管延寿技术研究现状与展望[J]. 兵工学报, 2023, 44(3) :638-655.
doi: 10.12382/bgxb.2021.0787
|
|
MAO B Q, ZHAO Q J, BAI X H, et al. Review and prospect of life extension technology for gun barrels[J]. Acta Armamentarii, 2023, 44(3):638-655. (in Chinese)
doi: 10.12382/bgxb.2021.0787
|
| [14] |
许耀峰, 单春来, 刘朋科, 等. 火炮身管寿终机理及寿命预测方法研究综述[J]. 火炮发射与控制学报, 2020, 41(3):89-94,101.
|
|
XU Y F, SHAN C L, LIU P K, et al. Review of the research on failure mechanism and life prediction method of gun barrel[J]. Journal of Gun Launch & Control, 2020, 41(3):89-94,101. (in Chinese)
|
| [15] |
聂林涛. 某型高射炮杀伤榴弹膛炸问题研究[J]. 舰船电子工程, 2020, 40(12):119-121.
|
|
NIE L T. Research on bore premature of anti-aircraft gun killing howitzer[J]. Ship Electronic Engineering. 2020, 40(12):119-121. (in Chinese)
|
| [16] |
吴斌, 司东亚, 郑靖, 等. 基于应变的火炮身管健康监测和剩余寿命评估的可行性研究[J]. 兵器装备工程学报, 2024, 45(1):49-58.
|
|
WU B, SI D Y, ZHENG J, et al. Feasibility study on strain-based health monitoring and life assessment of gun barrel[J]. Journal of Ordnance Equipment Engineering, 2024, 45(1):49-58. (in Chinese)
|
| [17] |
苏玉昆, 马涛, 赵晓鑫, 等. 基于有限元技术的疲劳裂纹扩展方法研究进展[J]. 力学进展, 2024, 54(2):308-343.
|
|
SU Y K, MA T, ZHAO X X, et al. Research progress of fatigue crack propagation method based on finite element technology. Advances in Mechanics, 2024, 54(2):308-343. (in Chinese)
|
| [18] |
DAI Y F, HOU B, LEE S, et al. A thermal-hydraulic-mechanical-chemical coupling model for acid fracture propagation based on a phase-field method[J]. Rock Mechanics and Rock Engineering, 2024, 57(7): 4583-4605.
|
| [19] |
HU Z Y, SUO X F, WANG M J, et al. A phase-field-cohesive-zone framework to simulate multiple failure mechanisms of elastoplastic fiber-reinforced composites[J]. International Journal of Fracture, 2023, 244(1):43-59.
|
| [20] |
BUSAR Y O, MANURUNG Y H P, LEITNER M, et al. Numerical evaluation of fatigue crack growth of structural steels using energy release rate with VCCT[J]. Applied Sciences, 2022.12(5):2641.
|
| [21] |
GAIROLA S, RENGASWAMY J, VERMA R. A study on XFEM simulation of tensile,fracture toughness,and fatigue crack growth behavior of Al 2024 alloy through fatigue crack growth rate models using genetic algorithm[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023.46(6):2121-2138.
|
| [22] |
WEN L F, TIAN R, WANG L X, et al. Improved XFEM for multiple crack analysis:Accurate and efficient implementations for stress intensity factors[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 411:116045.
|
| [23] |
MARTULLI L M, BERNASCONI A. An efficient and versatile use of the VCCT for composites delamination growth under fatigue loadings in 3D numerical analysis:the Sequential static fatigue algorithm[J]. International Journal of Fatigue,2023.170:107493.
|
| [24] |
董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3):023981.
|
|
DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):023981. (in Chinese)
|