| [1] |
DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7):1-18.
|
| [2] |
穆凌霞, 王新民, 谢蓉, 等. 高超音速飞行器及其制导控制技术综述[J]. 哈尔滨工业大学学报, 2019, 51(3):1-14.
|
|
MU L X, WANG X M, XIE R, et al. A survey of the hypersonic flight vehicle and its guidance and control technology[J]. Journal of Harbin Institute of Technology, 2019, 51(3):1-14. (in Chinese)
|
| [3] |
张远, 黄旭, 路坤锋, 等. 高超声速飞行器控制技术研究进展与展望[J]. 宇航学报, 2022, 43(7):866-879.
|
|
ZHANG Y, HUANG X, LU K F, et al. Research progress and prospect of the hypersonic flight vehicle control technology[J]. Journal of Astronautics, 2022, 43(7):866-879. (in Chinese)
|
| [4] |
YE H, JIANG B. Adaptive switching control for hypersonic vehicle with uncertain control direction[J]. Journal of the Franklin Institute, 2020, 357(13):8851-8869.
|
| [5] |
XU B, SHOU Y X, SHI Z K, et al. Predefined-time hierarchical coordinated neural control for hypersonic reentry vehicle[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(11):8456-8466.
|
| [6] |
ZHAO S W, WANG J, C XU H T, et al. ADP-based attitude-tracking control with prescribed performance for hypersonic vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5):6419-6431.
|
| [7] |
HU G J, GUO J G, GUO Z Y, et al. ADP-based intelligent tracking algorithm for reentry vehicles subjected to model and state uncertainties[J]. IEEE Transactions on Industrial Informatics, 2022, 19(4):6047-6055.
|
| [8] |
BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9):2090-2099.
|
| [9] |
LIU J X, AN H, GAO Y B, et al. Adaptive control of hypersonic flight vehicles with limited angle-of-attack[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2):883-894.
|
| [10] |
GAO Y B, LIU J X, WANG Z H, et al. Interval type-2 FNN-based quantized tracking control for hypersonic flight vehicles with prescribed performance[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2019, 51(3):1981-1993.
|
| [11] |
GAO S H, LIU X P, JING Y W, et al. Finite-time prescribed performance control for spacecraft attitude tracking[J]. IEEE/ASME Transactions on Mechatronics, 2021, 27(5):3087-3098.
|
| [12] |
BU X W, QI Q, JIANG B X. A simplified finite-time fuzzy neural controller with prescribed performance applied to waverider aircraft[J]. IEEE Transactions on Fuzzy Systems, 2021, 30(7):2529-2537.
|
| [13] |
SHAO X L, WANG H L. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties[J]. ISA Transactions, 2015, 54:27-38.
doi: 10.1016/j.isatra.2014.06.010
pmid: 25082266
|
| [14] |
WANG W, WANG Y C, CHEN S W, et al. Observer-based robust high-order fully actuated attitude autopilot design for spinning glide-guided projectiles[J]. Defence Technology, 2024, 34:282-294.
|
| [15] |
EMAMI S A, CASTALDI P, BANAZADEH A. Neural network-based flight control systems:Present and future[J]. Annual Reviews in Control, 2022, 53:97-137.
|
| [16] |
CHENG X L, WANG P, TANG G J. Fuzzy-reconstruction-based robust tracking control of an air-breathing hypersonic vehicle[J]. Aerospace Science and Technology, 2019, 86:694-703.
|
| [17] |
王伟, 杨婧, 南宇翔, 等. 基于自适应扰动观测器的旋转弹神经网络过载驾驶仪设计[J]. 兵工学报, 2024, 45(11):3841-3855.
doi: 10.12382/bgxb.2023.1085
|
|
WANG W, YANG J, NAN Y X, et al. Design of a neural network acceleration autopilot for spinning projectiles based on adaptive disturbance observer[J]. Acta Armamentarii, 2024, 45(11):3841-3855. (in Chinese)
doi: 10.12382/bgxb.2023.1085
|
| [18] |
SMART M K, HASS N E, PAULL A. Flight data analysis of the HyShot 2 scramjet flight experiment[J]. AIAA Journal, 2006, 44(10):2366-2375.
|
| [19] |
SINGH P, GIRI D K, GHOSH A K. Robust backstepping sliding mode aircraft attitude and altitude control based on adaptive neural network using symmetric BLF[J]. Aerospace Science and Technology, 2022, 126:107653.
|
| [20] |
SINGH P, GIRI D K, GHOSH A K. Dynamic surface neuro-backstepping based flight control with asymmetric output constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 59(4):3859-2870.
|
| [21] |
DONG Z H, LI Y H, LV M L. Adaptive nonsingular fixed‐time control for hypersonic flight vehicle considering angle of attack constraints[J]. International Journal of Robust and Nonlinear Control, 2023, 33(12):6754-6777.
|
| [22] |
SUN J G, SONG S M, WU G Q. Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode[J]. Journal of Spacecraft and Rockets, 2017, 54(6):1304-1316.
|
| [23] |
岳彬, 马文, 呼卫军. 高超声速飞行器的自适应容错控制[J]. 兵工学报, 2021, 42(3):521-529.
|
|
YUE B, MA W, HU W J. Adaptive fault-tolerance control of hypersonic vehicles[J]. Acta Armamentarii, 2021, 42(3):521-529. (in Chinese)
|
| [24] |
WANG L, QI R Y, JIANG B. Adaptive fault-tolerant control for non-minimum phase hypersonic vehicles based on adaptive dynamic programming[J]. Chinese Journal of Aeronautics, 2024, 37(3):290-311.
|
| [25] |
GE S S, HANG C C, LEE T H, et al. Stable adaptive neural network control[M]. New York,US: Springer Science & Business Media, 2013.
|
| [26] |
GE S S, WANG C. Direct adaptive NN control of a class of nonlinear systems[J]. IEEE Transactions on Neural Networks, 2002, 13(1):214-221.
doi: 10.1109/72.977306
pmid: 18244420
|
| [27] |
CHEN M, GE S S, REN B B. Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints[J]. Automatica, 2011, 47(3):452-465.
|
| [28] |
FARRELL J A, POLYCARPOU M, SHARMA M, et al. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6):1391-1395.
|
| [29] |
ZHANG C, WU Y J. Non-singular terminal dynamic surface control based integrated guidance and control design and simulation[J]. ISA transactions, 2016, 63:112-120.
doi: S0019-0578(16)30036-2
pmid: 27049772
|
| [30] |
FIORENTINI L, SERRANI A. Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J]. Automatica, 2012, 48(7):1248-1261.
|