欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (S1): 250399-.doi: 10.12382/bgxb.2025.0399

• • 上一篇    下一篇

面向无人机航拍小目标的跨层动态检测网络

李科廷1, 赵子杰1,*(), 应展烽2, 沈诗淇1   

  1. 1 南京理工大学 瞬态物理全国重点实验室, 江苏 南京 210094
    2 南京理工大学 能源与动力工程学院, 江苏 南京 210094
  • 收稿日期:2025-05-23 上线日期:2025-11-06
  • 通讯作者:
  • 基金资助:
    江苏省自然资源厅科技计划项目(JSZRHYKJ202219)

Cross-layer Dynamic Detection Network for Small Target Detection in Aerial Photography

LI Keting1, ZHAO Zijie1,*(), YING Zhanfeng2, SHEN Shiqi1   

  1. 1 National Key Laboratory of Transient PhysicsNanjing University of Science and Technology, Nanjing 210094,Jiangsu, China
    2 School of Energy and Power EngineeringNanjing University of Science and Technology, Nanjing 210094,Jiangsu, China
  • Received:2025-05-23 Online:2025-11-06

摘要:

针对无人机目标检测面临目标尺度极端变化、小目标高密度遮挡及复杂背景干扰等挑战,提出基于改进YOLOv10的无人机航拍小目标检测的跨层动态检测网络。通过设计双分支跨层特征融合金字塔网络替换原金字塔网络结构,解决传统方法对小目标细节保留不足的问题;设计通道混洗深度上采样模块,将通道混洗操作与深度可分离卷积结合,通过高频残差增强小目标边缘特征;采用端到端动态检测头替代原有的检测头,引入动态加权机制,使得每个位置的特征表示能够根据上下文信息自适应调整。实验结表明:所提检测网络在VisDrone2019验证集上的mAP0.5和mAP0.5:0.95分别达到53.3 %和33.2%,较YOLOv10s分别提升了12.7%和9%,模型参数量减少了23.7%,FPS达到79。所提算法在保证良好的推理速度上显著提高了检测精度,具有较大的实用意义。

关键词: 小目标检测, 航拍图像, 特征融合, YOLOv10, 无人机, 通道混洗

Abstract:

To address the challenges of extreme scale variations,dense occlusion of small targets,and complex background interference in unmanned aerial vehicle (UAV)-based target detection,this paper proposes a cross-layer dynamic detection network based on an improved YOLOv10 for the detection of small target via UAV aerial photography.A dual-branch cross-layer feature fusion pyramid network for replacing the original pyramid network is designed to resolve the problem of insufficient detail preservation for small targets in traditional methods.A channel-shuffling depth-wise upsampling module is developed,which combines channel shuffle operations with depth-wise separable convolutions and enhances the edge features of small targets through high-frequency residual connections.An end-to-end dynamic detection head is adopted to replace the original detection head,and a dynamic weighting mechanism is introduced,which enables the adaptive adjustment of feature representations at each position based on contextual information.Experimental results show that the proposed detection network achieves mAP0.5 of 53.3% and mAP0.5:0.95 of 33.2% on the VisDrone 2019 validation set,which are improveed by 12.7% and 9% ,respectively,compared to YOLOv10s,while reduces the model parameters by 23.7% and achieves an FPS of 79.The proposed algorithm significantly enhances the detection accuracy while maintaining excellent inference speed.

Key words: small target detection, aerial image, feature fusion, YOLOv10, unmanned aerial vehicle, channel shuffle