欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (S1): 250398-.doi: 10.12382/bgxb.2025.0398

• • 上一篇    下一篇

含齿隙与饱和电动舵机的自适应神经网络输出反馈控制方法

朱泽军1, 王伟1, 林时尧2,*(), 纪毅3   

  1. 1 北京理工大学 空天科学与技术学院, 北京 100081
    2 中国兵器科学研究院, 北京 100089
    3 北京信息科技大学 自动化学院, 北京 100192
  • 收稿日期:2025-05-23 上线日期:2025-11-06
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(52272358); 国家自然科学基金项目(52402442); 中国科协青年人才托举项目(YESS20230098); 中国科协青年人才托举项目(2023QNRC001); 北京市青年人才托举项目(BYESS2023310)

Adaptive Neural Network Output Feedback Control Method for Electromechanical Actuator with Backlash and Saturation

ZHU Zejun1, WANG Wei1, LIN Shiyao2,*(), JI Yi3   

  1. 1 School of Aerospace EngineeringBeijing Institute of Technology, Beijing 100081, China
    2 China Research and Development Academy of Machinery Equipment, Beijing 100089, China
    3 School of AutomationBeijing Information Science and Technology University, Beijing 100192, China
  • Received:2025-05-23 Online:2025-11-06

摘要:

针对电动舵机控制器设计过程中的齿隙、输入饱和与状态信息不完全可测等问题,提出了一种基于自适应神经网络状态观测器的输出反馈控制方法。为刻画齿隙对系统动力学的影响,通过引入近似死区函数构建含齿隙的4阶伺服系统模型。针对状态不完全可测的问题,设计一种基于自适应神经网络的状态观测器,实现了存在模型不确定性条件下的系统状态重构。在反步法框架下,利用双曲正切Lyapunov函数结合状态观测器输出构建了输出反馈控制器。针对可能出现的输入饱和,引入辅助滤波系统以补偿输入饱和的影响。基于Lyapunov理论证明了闭环系统中误差信号的有界性。通过构建多组仿真实验,验证了所设计控制方法的有效性。研究结果表明,所设计的控制方法能够抑制齿隙非线性对系统性能的影响,补偿输入饱和约束,并在状态不完全可测条件下实现舵面的精确跟踪控制。

关键词: 电动舵机, 齿隙非线性, 自适应神经网络状态观测器, 输出反馈控制, 控制输入饱和

Abstract:

Aiming at the problems of backlash,input saturation and unmeasured state information in the design process of electromechanical actuator controller,an output feedback control method based on adaptive neural network state observer is proposed.In order to describe the influence of backlash on system dynamics,a fourth-order servo system model with backlash is constructed by introducing an approximate dead zone function.A state observer based on adaptive neural network is designed for the unmeasurable state to realize the reconstruction of system state under the condition of model uncertainty.Under the framework of backstepping method,an output feedback controller is constructed by using the hyperbolic tangent Lyapunov function and state observer output.For the possible input saturation,an auxiliary filtering system is introduced to compensate the influence of input saturation.The boundedness of error signals in the closed-loop system is proved based on Lyapunov theory.The effectiveness of the proposed control method is verified by conducting multiple sets of simulation experiments.The results demonstrate the superior performance of the proposed method in suppressing the effect of backlash nonlinearityt on the system performance,compensating for input saturation,and achieving the actuator accurate tracking control with unmeasured state information.

Key words: electromechanical actuator, backlash nonlinearity, adaptive neural network state observer, output feedback control, control input saturation