欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (S1): 241043-.doi: 10.12382/bgxb.2024.1043

• • 上一篇    下一篇

基于公共变量的双变量逆高斯过程的湿式离合器RUL预测

冯毓庆1, 郑长松1, 于亮1,*(), 张丁戈1, 张金乐2, 张玉东2   

  1. 1 北京理工大学 机械与车辆学院, 北京 100081
    2 中国北方车辆研究所 车辆传动重点实验室, 北京 100072
  • 收稿日期:2024-11-18 上线日期:2025-11-06
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(52205047); 国家自然科学基金项目(52175037); 中国博士后科学基金项目(BX20220379); 学校前沿交叉计划项目(2024CX11006)

RUL Prediction of Wet Clutches based on Bivariate Inverse Gaussian Degradation Process with Common Random Variable

FENG Yuqing1, ZHENG Changsong1, YU Liang1,*(), ZHANG Dingge1, ZHANG Jinle2, ZHANG Yudong2   

  1. 1 School of Mechanical EngineeringBeijing Institute of Technology, Beijing 100081, China
    2 Science and Technology on Vehicle Transmission LaboratoryChina North Vehicle Research Institute, Beijing 100072, China
  • Received:2024-11-18 Online:2025-11-06

摘要: 湿式离合器是车辆综合传动装置中重要的组成部分,其剩余使用寿命(Remaining Useful Life,RUL)的准确在线预测对设备的运行安全和视情维护策略的制定起着关键作用。基于逆高斯过程构建具有公共变量的双变量退化模型,通过公共变量表征变量间的相关性,利用贝叶斯方法进行模型参数的后验估计,并提出拟合优度检验指标。考虑离合器设备的运行维护过程,推导其动态失效率和可用度的求解方法,提出基于蒙特卡洛模拟的离合器RUL在线预测方法,通过仿真研究和湿式离合器试验退化数据分析,验证了模型在不同样本量数据下的有效性。结果表明:相较于传统伽马模型,所建立的双变量逆高斯过程模型能够准确估计湿式离合器设备的失效率和可用度,以及实现更准确的RUL在线预测。

关键词: 湿式离合器, 退化分析, 逆高斯过程, 剩余使用寿命预测

Abstract:

Wet multi-disc clutch is a critical component within the vehicle’s integrated transmission system,where the accurate online prediction of remaining useful life (RUL) plays a key role in ensuring the operational safety and formulating the condition-based maintenance strategies.A bivariate degradation model with common random variable based on inverse Gaussian processes is developed.The correlation between variables is characterized by a common random variable.The Bayesian method is used for the posterior estimation of model parameters,and the index for goodness-of-fit test is proposed.Considering the operation and maintenance process of wet clutch equipment,the solving method for its dynamic failure rate and availability is derived,and an online RUL prediction method based on Monte Carlo simulation is proposed.The effectiveness of the proposed model is verified with different sample sizes through simulation study and degradation analysis of wet clutch tests.Compared to traditional Gamma models,the proposed bivariate inverse Gaussian process model is enable to accurately estimate the failure rates and availability of wet clutch and complete more precise online RUL prediction.

Key words: wet clutch, degradation analysis, inverse Gaussian process, remaining useful life prediction