兵工学报 ›› 2025, Vol. 46 ›› Issue (8): 240686-.doi: 10.12382/bgxb.2024.0686
收稿日期:
2024-08-12
上线日期:
2025-08-28
通讯作者:
基金资助:
ZHU Yichao1, FANG Feng1,*(), WANG Zhenya2, PENG Dongliang1
Received:
2024-08-12
Online:
2025-08-28
摘要:
为了解决不确定场景下目标威胁评估指标权值难以优化、评估结果抗干扰性差等问题,采用直觉模糊理论、灰色关联度、二次规划求解等方法,提出兼顾主客观评价的海上舰船目标威胁评估方法。围绕舰船编队多维度能力构建两级三层评估指标体系,针对噪声、传感器偏差和认知模糊引起的不确定性,采用直觉模糊集进行评估指标定量化描述和运算操作,定义主客观理想解母序列,分别设计基于客观数据特征和主观专家偏好的灰色关联度;构建综合主客观灰色关联度的属性指标权重优化模型,应用Lagrange方法求解最优权值;考虑外界非预期干扰因素对于评估可信度的影响,采用群广义直觉模糊软集描述专家对干扰程度的判断,以修正评估结果。仿真结果验证了方法的有效性。
中图分类号:
朱奕超, 方峰, 王振亚, 彭冬亮. 不确定场景下基于直觉模糊集和灰色关联度的舰船目标威胁评估方法[J]. 兵工学报, 2025, 46(8): 240686-.
ZHU Yichao, FANG Feng, WANG Zhenya, PENG Dongliang. A Target Threat Assessment Approach Based on Intuitionistic Fuzzy Set and Grey Correlation Degree for Warships in Uncertain Scenarios[J]. Acta Armamentarii, 2025, 46(8): 240686-.
不确定程度 | 犹豫度计算参数p |
---|---|
很不确定 | 0.8 |
不确定 | 0.65 |
一般 | 0.5 |
确定 | 0.3 |
很确定 | 0.1 |
表1 不确定度与犹豫度对应关系
Table 1 Correspondence between uncertainty and hesitancy
不确定程度 | 犹豫度计算参数p |
---|---|
很不确定 | 0.8 |
不确定 | 0.65 |
一般 | 0.5 |
确定 | 0.3 |
很确定 | 0.1 |
编号 | C11 | C12 | C31 | C53 | C62 | 相对距 离/km |
---|---|---|---|---|---|---|
1 | 航母 (很确定) | 完好 (确定) | 强 (确定) | 较快 (确定) | 强 (很确定) | [302,344] |
2 | 航母 (很确定) | 完好 (确定) | 强 (确定) | 快 (确定) | 强 (确定) | [311,350] |
3 | 驱逐 (很确定) | 完好 (确定) | 较强 (很确定) | 中等 (一般) | 中等 (很确定) | [353,388] |
4 | 驱逐 (确定) | 良好 (很确定) | 较强 (不确定) | 中等 (确定) | 较强 (一般) | [345,380] |
5 | 护卫 (一般) | 轻伤 (确定) | 中等 (确定) | 中等 (很确定) | 中等 (很确定) | [336,378] |
6 | 护卫 (确定) | 轻伤 (很确定) | 较强 (不确定) | 较慢 (确定) | 较弱 (确定) | [290,331] |
7 | 护卫 (不确定) | 良好 (确定) | 中等 (确定) | 较慢 (确定) | 较弱 (确定) | [404,442] |
8 | 护卫 (一般) | 完好 (一般) | 较弱 (一般) | 较慢 (很确定) | 中等 (很确定) | [410,453] |
9 | 护卫 (确定) | 轻伤 (一般) | 中等 (确定) | 中等 (不确定) | 较弱 (一般) | [387,424] |
表2 不确定性场景下舰船目标的初步定性判断数据
Table 2 Preliminary qualitative judgment data of warships in uncertainty scenario
编号 | C11 | C12 | C31 | C53 | C62 | 相对距 离/km |
---|---|---|---|---|---|---|
1 | 航母 (很确定) | 完好 (确定) | 强 (确定) | 较快 (确定) | 强 (很确定) | [302,344] |
2 | 航母 (很确定) | 完好 (确定) | 强 (确定) | 快 (确定) | 强 (确定) | [311,350] |
3 | 驱逐 (很确定) | 完好 (确定) | 较强 (很确定) | 中等 (一般) | 中等 (很确定) | [353,388] |
4 | 驱逐 (确定) | 良好 (很确定) | 较强 (不确定) | 中等 (确定) | 较强 (一般) | [345,380] |
5 | 护卫 (一般) | 轻伤 (确定) | 中等 (确定) | 中等 (很确定) | 中等 (很确定) | [336,378] |
6 | 护卫 (确定) | 轻伤 (很确定) | 较强 (不确定) | 较慢 (确定) | 较弱 (确定) | [290,331] |
7 | 护卫 (不确定) | 良好 (确定) | 中等 (确定) | 较慢 (确定) | 较弱 (确定) | [404,442] |
8 | 护卫 (一般) | 完好 (一般) | 较弱 (一般) | 较慢 (很确定) | 中等 (很确定) | [410,453] |
9 | 护卫 (确定) | 轻伤 (一般) | 中等 (确定) | 中等 (不确定) | 较弱 (一般) | [387,424] |
目标 | 舰船价值 | 侦察能力 | 指控能力 | 打击能力 | 电子战能力 | 拦截能力 |
---|---|---|---|---|---|---|
T1 | <0.900,0.084> | <0.862,0.031> | <0.887,0.053> | <0.848,0.050> | <0.748,0.121> | <0.882,0.046> |
T2 | <0.900,0.084> | <0.847,0.054> | <0.883,0.064> | <0.824,0.074> | <0.786,0.122> | <0.874,0.058> |
T3 | <0.772,0.193> | <0.763,0.159> | <0.717,0.227> | <0.749,0.173> | <0.616,0.263> | <0.679,0.236> |
T4 | <0.700,0.224> | <0.781,0.140> | <0.725,0.117> | <0.766,0.154> | <0.633,0.262> | <0.751,0.140> |
T5 | <0.666,0.167> | <0.785,0.118> | <0.619,0.240> | <0.771,0.134> | <0.638,0.252> | <0.699,0.195> |
T6 | <0.500,0.373> | <0.896,0.010> | <0.638,0.080> | <0.877,0.010> | <0.739,0.022> | <0.782,0.047> |
T7 | <0.560,0.183> | <0.644,0.272> | <0.557,0.328> | <0.629,0.287> | <0.496,0.415> | <0.553,0.346> |
T8 | <0.666,0.182> | <0.620,0.285> | <0.439,0.332> | <0.605,0.300> | <0.479,0.445> | <0.597,0.341> |
T9 | <0.560,0.283> | <0.684,0.234> | <0.570,0.312> | <0.669,0.249> | <0.554,0.309> | <0.575,0.277> |
表3 目标属性量化表
Table 3 Target attribute quantification
目标 | 舰船价值 | 侦察能力 | 指控能力 | 打击能力 | 电子战能力 | 拦截能力 |
---|---|---|---|---|---|---|
T1 | <0.900,0.084> | <0.862,0.031> | <0.887,0.053> | <0.848,0.050> | <0.748,0.121> | <0.882,0.046> |
T2 | <0.900,0.084> | <0.847,0.054> | <0.883,0.064> | <0.824,0.074> | <0.786,0.122> | <0.874,0.058> |
T3 | <0.772,0.193> | <0.763,0.159> | <0.717,0.227> | <0.749,0.173> | <0.616,0.263> | <0.679,0.236> |
T4 | <0.700,0.224> | <0.781,0.140> | <0.725,0.117> | <0.766,0.154> | <0.633,0.262> | <0.751,0.140> |
T5 | <0.666,0.167> | <0.785,0.118> | <0.619,0.240> | <0.771,0.134> | <0.638,0.252> | <0.699,0.195> |
T6 | <0.500,0.373> | <0.896,0.010> | <0.638,0.080> | <0.877,0.010> | <0.739,0.022> | <0.782,0.047> |
T7 | <0.560,0.183> | <0.644,0.272> | <0.557,0.328> | <0.629,0.287> | <0.496,0.415> | <0.553,0.346> |
T8 | <0.666,0.182> | <0.620,0.285> | <0.439,0.332> | <0.605,0.300> | <0.479,0.445> | <0.597,0.341> |
T9 | <0.560,0.283> | <0.684,0.234> | <0.570,0.312> | <0.669,0.249> | <0.554,0.309> | <0.575,0.277> |
目标编号 | 偏好度 | 目标编号 | 偏好度 |
---|---|---|---|
T1 | <0.864,0.058> | T6 | <0.775,0.040> |
T2 | <0.861,0.072> | T7 | <0.579,0.288> |
T3 | <0.725,0.203> | T8 | <0.585,0.295> |
T4 | <0.732,0.167> | T9 | <0.607,0.274> |
T5 | <0.707,0.173> |
表4 各目标威胁的专家偏好度
Table 4 Expert preference degree for each target
目标编号 | 偏好度 | 目标编号 | 偏好度 |
---|---|---|---|
T1 | <0.864,0.058> | T6 | <0.775,0.040> |
T2 | <0.861,0.072> | T7 | <0.579,0.288> |
T3 | <0.725,0.203> | T8 | <0.585,0.295> |
T4 | <0.732,0.167> | T9 | <0.607,0.274> |
T5 | <0.707,0.173> |
模型参数α、β | 属性权重ω(ω1~ω6) |
---|---|
W1(α=1、β=0) | [0.167,0.156,0.173,0.159,0.183,0.163] |
W2(α=0.75、β=0.25) | [0.162,0.157,0.170,0.161,0.189,0.160] |
W3(α=0.5、β=0.5) | [0.158,0.159,0.167,0.164,0.195,0.157] |
W4(α=0.25、β=0.75) | [0.152,0.161,0.163,0.167,0.204,0.153] |
W5(α=0、β=1) | [0.146,0.163,0.158,0.170,0.214,0.149] |
表5 不同主客观倾向下的属性权重优化结果
Table 5 Optimized results of attribute weights
模型参数α、β | 属性权重ω(ω1~ω6) |
---|---|
W1(α=1、β=0) | [0.167,0.156,0.173,0.159,0.183,0.163] |
W2(α=0.75、β=0.25) | [0.162,0.157,0.170,0.161,0.189,0.160] |
W3(α=0.5、β=0.5) | [0.158,0.159,0.167,0.164,0.195,0.157] |
W4(α=0.25、β=0.75) | [0.152,0.161,0.163,0.167,0.204,0.153] |
W5(α=0、β=1) | [0.146,0.163,0.158,0.170,0.214,0.149] |
目标 | E1 | E2 | E3 |
---|---|---|---|
T1 | <0.79,0.11> | <0.81,0.13> | <0.80,0.12> |
T1 | <0.81,0.12> | <0.84,0.10> | <0.83,0.10> |
T3 | <0.83,0.10> | <0.83,0.12> | <0.84,0.09> |
T4 | <0.85,0.09> | <0.86,0.09> | <0.86,0.07> |
T5 | <0.70,0.15> | <0.74,0.14> | <0.75,0.13> |
T6 | <0.79,0.14> | <0.80,0.12> | <0.82,0.09> |
T7 | <0.90,0.04> | <0.89,0.06> | <0.92,0.03> |
T8 | <0.84,0.09> | <0.87,0.07> | <0.89,0.05> |
T9 | <0.75,0.12> | <0.83,0.10> | <0.79,0.11> |
表6 专家广义参量评价
Table 6 Experts’ evaluation of generalized parameter
目标 | E1 | E2 | E3 |
---|---|---|---|
T1 | <0.79,0.11> | <0.81,0.13> | <0.80,0.12> |
T1 | <0.81,0.12> | <0.84,0.10> | <0.83,0.10> |
T3 | <0.83,0.10> | <0.83,0.12> | <0.84,0.09> |
T4 | <0.85,0.09> | <0.86,0.09> | <0.86,0.07> |
T5 | <0.70,0.15> | <0.74,0.14> | <0.75,0.13> |
T6 | <0.79,0.14> | <0.80,0.12> | <0.82,0.09> |
T7 | <0.90,0.04> | <0.89,0.06> | <0.92,0.03> |
T8 | <0.84,0.09> | <0.87,0.07> | <0.89,0.05> |
T9 | <0.75,0.12> | <0.83,0.10> | <0.79,0.11> |
目标 | W1 | W2 | W3 | W4 | W5 | 排序 |
---|---|---|---|---|---|---|
T1 | 0.1358 | 0.1357 | 0.1356 | 0.1355 | 0.1353 | 2 |
T2 | 0.1391 | 0.1391 | 0.1389 | 0.1388 | 0.1387 | 1 |
T3 | 0.1090 | 0.1089 | 0.1089 | 0.1088 | 0.1088 | 5 |
T4 | 0.1178 | 0.1177 | 0.1177 | 0.1176 | 0.1176 | 4 |
T5 | 0.0968 | 0.0969 | 0.0969 | 0.0970 | 0.0971 | 6 |
T6 | 0.1270 | 0.1273 | 0.1276 | 0.1281 | 0.1286 | 3 |
T7 | 0.0953 | 0.0952 | 0.0952 | 0.0951 | 0.0951 | 7 |
T8 | 0.0908 | 0.0907 | 0.0906 | 0.0904 | 0.0902 | 8 |
T9 | 0.0884 | 0.0885 | 0.0886 | 0.0886 | 0.0887 | 9 |
表7 目标威胁度得分与排序
Table 7 Target threat score and ranking
目标 | W1 | W2 | W3 | W4 | W5 | 排序 |
---|---|---|---|---|---|---|
T1 | 0.1358 | 0.1357 | 0.1356 | 0.1355 | 0.1353 | 2 |
T2 | 0.1391 | 0.1391 | 0.1389 | 0.1388 | 0.1387 | 1 |
T3 | 0.1090 | 0.1089 | 0.1089 | 0.1088 | 0.1088 | 5 |
T4 | 0.1178 | 0.1177 | 0.1177 | 0.1176 | 0.1176 | 4 |
T5 | 0.0968 | 0.0969 | 0.0969 | 0.0970 | 0.0971 | 6 |
T6 | 0.1270 | 0.1273 | 0.1276 | 0.1281 | 0.1286 | 3 |
T7 | 0.0953 | 0.0952 | 0.0952 | 0.0951 | 0.0951 | 7 |
T8 | 0.0908 | 0.0907 | 0.0906 | 0.0904 | 0.0902 | 8 |
T9 | 0.0884 | 0.0885 | 0.0886 | 0.0886 | 0.0887 | 9 |
目标 | 舰船 价值 | 侦察 能力 | 指控 能力 | 打击 能力 | 电子战 能力 | 拦截 能力 |
---|---|---|---|---|---|---|
T1 | 0.900 | 0.656 | 0.831 | 0.729 | 0.585 | 0.812 |
T2 | 0.900 | 0.641 | 0.826 | 0.715 | 0.614 | 0.803 |
T3 | 0.750 | 0.569 | 0.668 | 0.643 | 0.475 | 0.595 |
T4 | 0.700 | 0.582 | 0.674 | 0.658 | 0.487 | 0.685 |
T5 | 0.600 | 0.591 | 0.548 | 0.667 | 0.495 | 0.612 |
T6 | 0.500 | 0.681 | 0.450 | 0.751 | 0.523 | 0.587 |
T7 | 0.550 | 0.482 | 0.507 | 0.549 | 0.370 | 0.463 |
T8 | 0.600 | 0.468 | 0.374 | 0.533 | 0.362 | 0.536 |
T9 | 0.550 | 0.511 | 0.515 | 0.580 | 0.427 | 0.476 |
表8 AHP目标属性量化表
Table 8 Target attribute quantification by AHP
目标 | 舰船 价值 | 侦察 能力 | 指控 能力 | 打击 能力 | 电子战 能力 | 拦截 能力 |
---|---|---|---|---|---|---|
T1 | 0.900 | 0.656 | 0.831 | 0.729 | 0.585 | 0.812 |
T2 | 0.900 | 0.641 | 0.826 | 0.715 | 0.614 | 0.803 |
T3 | 0.750 | 0.569 | 0.668 | 0.643 | 0.475 | 0.595 |
T4 | 0.700 | 0.582 | 0.674 | 0.658 | 0.487 | 0.685 |
T5 | 0.600 | 0.591 | 0.548 | 0.667 | 0.495 | 0.612 |
T6 | 0.500 | 0.681 | 0.450 | 0.751 | 0.523 | 0.587 |
T7 | 0.550 | 0.482 | 0.507 | 0.549 | 0.370 | 0.463 |
T8 | 0.600 | 0.468 | 0.374 | 0.533 | 0.362 | 0.536 |
T9 | 0.550 | 0.511 | 0.515 | 0.580 | 0.427 | 0.476 |
目标 | 综合威胁 | 排序 |
---|---|---|
T1 | 0.760 | 1 |
T2 | 0.756 | 2 |
T3 | 0.624 | 4 |
T4 | 0.637 | 3 |
T5 | 0.592 | 5 |
T6 | 0.589 | 6 |
T7 | 0.492 | 9 |
T8 | 0.492 | 8 |
T9 | 0.514 | 7 |
表9 AHP-目标综合威胁
Table 9 Targets’ comprehensive threat analyzed by AHP
目标 | 综合威胁 | 排序 |
---|---|---|
T1 | 0.760 | 1 |
T2 | 0.756 | 2 |
T3 | 0.624 | 4 |
T4 | 0.637 | 3 |
T5 | 0.592 | 5 |
T6 | 0.589 | 6 |
T7 | 0.492 | 9 |
T8 | 0.492 | 8 |
T9 | 0.514 | 7 |
目标 | 威胁度 | 排序 |
---|---|---|
T1 | 0.133 | 2 |
T2 | 0.138 | 1 |
T3 | 0.115 | 4 |
T4 | 0.123 | 3 |
T5 | 0.094 | 8 |
T6 | 0.104 | 5 |
T7 | 0.104 | 6 |
T8 | 0.098 | 7 |
T9 | 0.091 | 9 |
表10 引入专家评价可靠性的基于AHP的目标威胁度排序修正
Table 10 AHP-based target threat score and ranking
目标 | 威胁度 | 排序 |
---|---|---|
T1 | 0.133 | 2 |
T2 | 0.138 | 1 |
T3 | 0.115 | 4 |
T4 | 0.123 | 3 |
T5 | 0.094 | 8 |
T6 | 0.104 | 5 |
T7 | 0.104 | 6 |
T8 | 0.098 | 7 |
T9 | 0.091 | 9 |
程度 | Ex | En | 不确定度 | He |
---|---|---|---|---|
强 | 0.9 | 0.085 | 很不确定 | 0.8 |
较强 | 0.7 | 0.085 | 不确定 | 0.65 |
中等 | 0.5 | 0.085 | 一般 | 0.5 |
较弱 | 0.3 | 0.085 | 确定 | 0.3 |
弱 | 0.15 | 0.042 | 很确定 | 0.1 |
表11 定性指标云模型对应表
Table 11 Corresponding table of qualitative index cloud model
程度 | Ex | En | 不确定度 | He |
---|---|---|---|---|
强 | 0.9 | 0.085 | 很不确定 | 0.8 |
较强 | 0.7 | 0.085 | 不确定 | 0.65 |
中等 | 0.5 | 0.085 | 一般 | 0.5 |
较弱 | 0.3 | 0.085 | 确定 | 0.3 |
弱 | 0.15 | 0.042 | 很确定 | 0.1 |
目标 | Ex | En | He | 排序 |
---|---|---|---|---|
T1 | 0.759 | 0.056 | 0.124 | 1 |
T2 | 0.756 | 0.055 | 0.132 | 2 |
T3 | 0.616 | 0.066 | 0.103 | 4 |
T4 | 0.630 | 0.065 | 0.190 | 3 |
T5 | 0.557 | 0.055 | 0.181 | 6 |
T6 | 0.614 | 0.057 | 0.207 | 5 |
T7 | 0.478 | 0.054 | 0.206 | 8 |
T8 | 0.477 | 0.054 | 0.194 | 9 |
T9 | 0.491 | 0.054 | 0.187 | 7 |
表12 云模型-目标综合威胁
Table 12 Target comprehensive threat evaluated from cloud model
目标 | Ex | En | He | 排序 |
---|---|---|---|---|
T1 | 0.759 | 0.056 | 0.124 | 1 |
T2 | 0.756 | 0.055 | 0.132 | 2 |
T3 | 0.616 | 0.066 | 0.103 | 4 |
T4 | 0.630 | 0.065 | 0.190 | 3 |
T5 | 0.557 | 0.055 | 0.181 | 6 |
T6 | 0.614 | 0.057 | 0.207 | 5 |
T7 | 0.478 | 0.054 | 0.206 | 8 |
T8 | 0.477 | 0.054 | 0.194 | 9 |
T9 | 0.491 | 0.054 | 0.187 | 7 |
目标 | Ex | En | He | 排序 |
---|---|---|---|---|
T1 | 0.608 | 0.102 | 0.120 | 2 |
T2 | 0.626 | 0.093 | 0.122 | 1 |
T3 | 0.514 | 0.084 | 0.092 | 4 |
T4 | 0.540 | 0.077 | 0.169 | 3 |
T5 | 0.407 | 0.088 | 0.151 | 8 |
T6 | 0.494 | 0.086 | 0.175 | 5 |
T7 | 0.431 | 0.053 | 0.185 | 6 |
T8 | 0.414 | 0.058 | 0.173 | 7 |
T9 | 0.388 | 0.069 | 0.160 | 9 |
表13 引入专家评价可靠性的基于云模型的目标威胁度排序修正
Table 13 Corrective target threat ranking based on cloud model
目标 | Ex | En | He | 排序 |
---|---|---|---|---|
T1 | 0.608 | 0.102 | 0.120 | 2 |
T2 | 0.626 | 0.093 | 0.122 | 1 |
T3 | 0.514 | 0.084 | 0.092 | 4 |
T4 | 0.540 | 0.077 | 0.169 | 3 |
T5 | 0.407 | 0.088 | 0.151 | 8 |
T6 | 0.494 | 0.086 | 0.175 | 5 |
T7 | 0.431 | 0.053 | 0.185 | 6 |
T8 | 0.414 | 0.058 | 0.173 | 7 |
T9 | 0.388 | 0.069 | 0.160 | 9 |
目标 | a | b | c | d | e |
---|---|---|---|---|---|
T1 | 2 | 2 | 2 | 2 | 2 |
T2 | 1 | 1 | 1 | 1 | 1 |
T3 | 5 | 5 | 5 | 5 | 5 |
T4 | 4 | 4 | 4 | 4 | 4 |
T5 | 6 | 6 | 6 | 6 | 6 |
T6 | 3 | 3 | 3 | 3 | 3 |
T7 | 7 | 7 | 7 | 7 | 7 |
T8 | 8 | 8 | 8 | 8 | 8 |
T9 | 9 | 9 | 9 | 9 | 9 |
表14 不同参数组下排序结果
Table 14 Sorting results under different parameter groups
目标 | a | b | c | d | e |
---|---|---|---|---|---|
T1 | 2 | 2 | 2 | 2 | 2 |
T2 | 1 | 1 | 1 | 1 | 1 |
T3 | 5 | 5 | 5 | 5 | 5 |
T4 | 4 | 4 | 4 | 4 | 4 |
T5 | 6 | 6 | 6 | 6 | 6 |
T6 | 3 | 3 | 3 | 3 | 3 |
T7 | 7 | 7 | 7 | 7 | 7 |
T8 | 8 | 8 | 8 | 8 | 8 |
T9 | 9 | 9 | 9 | 9 | 9 |
[1] |
|
[2] |
|
[3] |
陈美杉, 刘赢, 杨征, 等. 基于属性约简-改进TOPSIS的动态辐射源威胁评估[J]. 电光与控制, 2023, 30(6):22-29.
|
|
|
[4] |
doi: 10.3934/mbe.2023591 pmid: 37501487 |
[5] |
|
[6] |
孙海文, 于邵祯, 江源, 等. 海上无人机蜂群目标威胁评估方法[J]. 兵工学报, 2022, 43(增刊2):32-39.
|
doi: 10.12382/bgxb.2022.B006 |
|
[7] |
|
[8] |
陈东锋, 雷英杰. 空袭目标威胁程度的综合评估与排序模型[J]. 系统工程与电子技术, 2005, 27(9):1597-1599.
|
|
|
[9] |
黄力伟, 穆杨. 基于主成分分析法的护航行动海面目标威胁评估[J]. 火力与指挥控制, 2018, 43(8):147-150,155.
|
|
|
[10] |
朱胜伟, 周德云, 李兆强. 基于改进的主成分分析法的目标威胁评估[J]. 计算机仿真, 2010, 27(3):1-4.
|
|
|
[11] |
李一夫, 宋贵宝, 贾汝娜, 等. 联合防空任务下舰艇编队威胁评估方法[J]. 现代防御技术, 2019, 47(3):15-25.
|
|
|
[12] |
|
[13] |
徐浩, 邢清华, 王伟, 等. 基于改进结构熵权法的目标威胁灰色综合评估[J]. 信息工程大学学报, 2016, 17(5):620-625.
|
|
|
[14] |
王志勇, 冯杰. 基于灰色聚类的海上目标威胁等级评估[J]. 四川兵工学报, 2009, 30(3):46-49.
|
|
|
[15] |
|
[16] |
李伟湋, 高培雪, 陈进, 等. 基于累积前景理论和三支决策的无人机态势评估[J]. 上海交通大学学报, 2022, 56(11):1479-1490.
doi: 10.16183/j.cnki.jsjtu.2021.400 |
|
|
[17] |
靳崇, 孙娟, 王永佳, 等. 基于直觉模糊TOPSIS和变权VIKOR的防空目标威胁综合评估[J]. 系统工程与电子技术, 2022, 44(1):172-180.
doi: 10.12305/j.issn.1001-506X.2022.01.22 |
|
|
[18] |
向崇文, 姜青山, 杨辉. 海上电子战目标威胁分析与评估[J]. 现代防御技术, 2016, 44(6):148-154.
|
|
|
[19] |
黄钦龙, 刘忠, 夏家伟. 海上近岸目标威胁评估模型[J]. 指挥控制与仿真, 2019, 41(5):21-26.
doi: 10.3969/j.issn.1673-3819.2019.05.005 |
|
|
[20] |
舒健生, 赖晓昌, 李亚雄, 等. 基于APSO和FCM的海上移动目标威胁等级评估模型[J]. 火力与指挥控制, 2023, 48(8):74-80.
|
|
|
[21] |
彭耿, 郭伟民, 卢湛夷. 冷战后美国航母编队基本编成发展历程[J]. 国防科技, 2023, 44(4):62-67.
|
|
|
[22] |
郭琳琳, 彭芃, 张建英. 美国航空母舰编队作战能力分析[J]. 雷达与对抗, 2017, 37(3):17-23,34.
|
|
|
[23] |
|
[24] |
|
[25] |
谭学瑞, 邓聚龙. 灰色关联分析:多因素统计分析新方法[J]. 统计研究, 1995(3):46-48.
|
|
|
[26] |
李海燕, 柳强, 徐建忠, 等. 气象海洋环境对航母编队反潜作战影响仿真模型设计研究[J]. 舰船电子工程, 2023, 43(7):84-88.
|
|
|
[27] |
李德鑫, 陈曦, 潘龙, 等. 海洋环境雷达探测效能评估系统设计[J]. 电子测量技术, 2017, 40(7):80-84.
|
|
|
[28] |
武华, 苏秀琴. 基于群广义直觉模糊软集的空袭目标威胁评估方法[J]. 控制与决策, 2015, 30(8):1462-1468.
|
|
|
[29] |
周小强, 李庆国. 广义直觉模糊软集的格结构[J]. 湖南大学学报(自然科学版), 2014, 41(3):113-116.
|
|
|
[30] |
高建伟, 郭奉佳. 基于改进前景理论的直觉模糊随机多准则决策方法[J]. 控制与决策, 2019, 34(2):317-324.
|
|
|
[31] |
沈进昌, 杜树新, 罗祎, 等. 基于云模型的模糊综合评价方法及应用[J]. 模糊系统与数学, 2012, 26(6):115-123.
|
|
|
[32] |
|
[1] | 徐洪浩, 曹巍, 章业超, 陈志华. 基于KAN的舰载高功率微波武器目标威胁评估[J]. 兵工学报, 2024, 45(S2): 47-54. |
[2] | 陈美杉, 刘赢, 曾维贵, 钱坤. 空射诱饵弹干扰资源动态分配策略[J]. 兵工学报, 2023, 44(5): 1443-1455. |
[3] | 孙海文, 于邵祯, 江源, 周末, 唐嘉钰, 李丹. 海上无人机蜂群目标威胁评估方法[J]. 兵工学报, 2022, 43(S2): 32-39. |
[4] | 陈军, 张岳, 陈晓威, 佟龑. 基于模糊灰色认知图的复杂战场智能态势感知建模方法[J]. 兵工学报, 2022, 43(5): 1093-1106. |
[5] | 靳冰洋, 刘峥, 秦基凯. 基于灰色关联度的两级实时航迹关联算法[J]. 兵工学报, 2020, 41(7): 1330-1338. |
[6] | 奚之飞, 徐安, 寇英信, 李战武, 杨爱武. 基于前景理论的空战目标威胁评估[J]. 兵工学报, 2020, 41(6): 1236-1248. |
[7] | 胡涛, 王栋, 孙曜, 黄震宇, 姜龙亭. 基于改进CRITIC-LRA和灰色逼近理想解排序法的空战威胁评估[J]. 兵工学报, 2020, 41(12): 2561-2569. |
[8] | 李伟, 姜俊峰, 任海波, 张光辉. 行进间火炮指向稳定跟踪系统建模与控制[J]. 兵工学报, 2018, 39(8): 1479-1490. |
[9] | 杨帆, 王铁宁. 多目标优化的多品种维修器材分配问题研究[J]. 兵工学报, 2017, 38(6): 1186-1191. |
[10] | 方浩, 李艾华, 潘玉龙, 王学进, 姜柯, 王华. 面向视觉相似的红外伪装仿真效果评估[J]. 兵工学报, 2017, 38(2): 351-357. |
[11] | 史小斌, 顾红, 苏卫民, 董天琦, 陈绪龙. 地面侦察雷达目标威胁度评估方法研究[J]. 兵工学报, 2015, 36(6): 1128-1135. |
[12] | 索中英, 程嗣怡, 袁修久, 李彦明. 优势决策信息系统规则获取方法及应用[J]. 兵工学报, 2015, 36(3): 539-544. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||