[1] 理查德·埃斯特里·马歇尔, 王莹. 电磁轨道炮的科学与技术[M]. 北京:兵器工业出版社, 2006. MARSHALL R A, WANG Y. Science & technology of the electromagnetic railgun[M]. Beijing: Publishing House of Ordnance Industry, 2006. (in Chinese) [2] 古刚, 向阳, 张建革. 国际电磁发射技术研究现状[J]. 舰船科学技术, 2007, 29(增刊1):156-158. GU G, XIANG Y, ZHANG J G. The overview of the international electromagnetic launch technology research[J]. Ship Science and Technology, 2007, 29(S1):156-158. (in Chinese) [3] WATT T, STEFANI F, CRAWFORD M, et al. Investigation of damage to solid-armature railguns at startup[J]. IEEE Transactions on Magnetics, 2007, 43(1):214-218. [4] 武晓龙, 冯寒亮. 美国电磁轨道炮技术探析[J]. 飞航导弹, 2019(2):10-15. WU X L, FENG H L.The analysis on the technology of electromagnetic rail gun in USA[J]. Aerodynamic Missile Journal, 2019(2): 10-15. (in Chinese) [5] 周之奎, 陈秋华. 电磁轨道炮性能的数值模拟[J]. 高压物理学报, 1989, 3(4):308-314. ZHOU Z K, CHEN Q H. Numerical simulation of the performance of electromagnetic railguns[J]. Chinese Journal of High Pressure Physics, 1989, 3(4):308-314. (in Chinese) [6] 李贞晓. 电热化学炮用电容型高功率脉冲电源被动保护方法的初步研究[D]. 南京:南京理工大学, 2007. LI Z X. Preliminary study on passive protection of capacitive high energy pulse-power for electrothermal chemical gun [D].Nanjing: Nanjing University of Science and Technology, 2007. (in Chinese) [7] 李迎生. 小口径电磁轨道炮内弹道特性初步研究[D]. 南京:南京理工大学, 2007. LI Y S. Primary study on interior ballistics of a small-caliber electromagnetical rail gun[D]. Nanjing: Nanjing University of Science and Technology, 2007. (in Chinese) [8] 罗季, 脉冲强磁场装置本地测控系统的研究与设计[D]. 武汉:华中科技大学,2009. LUO J. The research and design of the local measurement and control system of pulsed high magnetic field facility[D]. Wuhan: Huazhong University of Science and Technology, 2009. (in Chinese) [9] 田振国, 杨阳, 白象忠. 电磁轨道发射过程中电枢与导轨的力学特性[J]. 机械强度, 2012,34(2):234-238. TIAN Z G, YANG Y, BAI X Z. Rail-armature mechanics behavior during launch process of electromagnetic rail[J]. Journal of Mechanical Strength, 2012, 34(2): 234-238. (in Chinese)
[10] 张芳, 蔡金燕, 朱艳辉. 电磁环境中电子器件的失效分析[J]. 电子器件, 2009,32(2):368-371. ZHANG F, CAI J Y, ZHU Y H. Failure analysis of electron device under electromagnetic environment[J]. Chinese Journal of Electron Devices, 2009, 32(2):368-371. (in Chinese) [11] 高梁, 李贞晓, 栗保明. 直线感应加速器的优化设计与仿真[J]. 火炮发射与控制学报, 2015,36(2):40-44. GAO L, LI Z X, LI B M. Optimization and simulation of linear induction accelerator[J]. Journal of Gun Launch & Control, 2015, 36(2):40-44. (in Chinese) [12] 张保玉, 黄伟, 陈子明. 高速滑动电接触下轨道槽蚀损伤问题研究[J]. 兵器材料科学与工程, 2015, 38(3):140-143. ZHANG B Y, HUANG W, CHEN Z M. Grooving damage of rails under high-velocity sliding electrical contact [J]. Ordnance Material Science and Engineering, 2015, 38(3):140-143. (in Chinese) [13] 杨玉东, 王建新, 薛文. 轨道炮速度趋肤效应的分析与仿真[J]. 强激光与粒子束, 2011, 23(7):1965-1968. YANG Y D, WANG J X, XUE W. Simulation and analysis of velocity skin effect of railgun[J]. High Power Laser and Particle Beams, 2011, 23(7):1965-1968. (in Chinese) [14] MYERS S H, SMITH A N. Demonstration of combined spray and evaporative cooling of an electromagnetic railgun[J]. IEEE Transactions on Magnetics, 2009, 45(1):396-401. [15] SATAPATHY S, WATT T, PERSAD C. Effect of geometry change on armature behavior[J]. IEEE Transactions on Magnetics, 2007, 43(1):408-412. [16] TZENG J T. Structural mechanics for electromagnetic railguns[J]. IEEE Transactions on Magnetics, 2005, 41(1):246-250. [17] FU H D, XU S, LI W, et al.Effect of rolling and aging processes on microstructure and properties of Cu-Cr-Zr alloy[J]. Material Science and Engineering: A, 2017, 700:107-115. [18] ZHANG S J, LI R G, KANG H J,et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment[J]. Materials Science and Engineering: A, 2017, 680:108-114. [19] KHEIFETS A E, KHOMSKAYA I V, KORSHUNOV L G, et al.Effect of high strain-rate deformation and aging temperature on the evolution of structure, microhardness, and wear resistance of low-alloyed Cu-Cr-Zr alloy[J]. Physics of Metals and Metallography, 2018, 119(4):402-411.
第41卷第5期2020 年5月 兵工学报ACTA ARMAMENTARII Vol.41No.5May2020
|