欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2017, Vol. 38 ›› Issue (12): 2463-2471.doi: 10.3969/j.issn.1000-1093.2017.12.021

• 论文 • 上一篇    下一篇

梯度温度场中多胞材料牺牲层的抗冲击分析

李志斌, 卢芳云   

  1. (国防科技大学 理学院, 湖南 长沙 410073)
  • 收稿日期:2017-01-25 修回日期:2017-01-25 上线日期:2018-02-01
  • 作者简介:李志斌(1985—), 男, 讲师, 博士。 E-mail: lizhibin@nudt.edu.cn
  • 基金资助:
    国家自然科学基金项目(11402299)

Anti-impact Analysis of Sacrificial Claddings of Cellular Material with Temperature Gradient

LI Zhi-bin, LU Fang-yun   

  1. (College of Science, National University of Defense Technology, Changsha 410073, Hunan, China)
  • Received:2017-01-25 Revised:2017-01-25 Online:2018-02-01

摘要: 针对多胞材料作为牺牲覆盖层防护结构来保护主体结构经受爆炸/冲击载荷的典型应用,分析了梯度温度场中多胞牺牲层的抗冲击行为。基于多胞材料的刚性-理想塑性-锁定模型,建立了梯度温度场中多胞牺牲层的一维冲击波模型,揭示了冲击波在多胞牺牲层中的传播特性,并获得了多胞牺牲层临界厚度和临界冲击速度随梯度温度场分布的依赖关系。通过有限元方法采用基于实验数据的多胞材料刚性-幂指数硬化模型验证了理论模型的有效性。推导了梯度温度场多胞牺牲层的临界厚度、临界冲击速度以及端面载荷历史等与温度场分布的关系,给出了给定长度的多胞牺牲层临界冲击速度与牺牲层端面温差的关系。结果表明,对于已设计完成的闭孔多胞材料牺牲覆盖层结构,当支撑端温度不变、冲击端温度升高时,结构容许的临界冲击速度是线性降低的。

关键词: 固体力学, 多胞材料牺牲层, 梯度温度场, 耐撞性, 冲击波传播, 优化设计

Abstract: Considering the applications of cellular materials as the sacrificial claddings in protecting the major structure from impact/blast load, a design method of cellular foam claddings with temperature gradient under high initial velocity impacts is presented. An one-dimensional model for the compaction of cellular foam claddings with temperature gradient is developed for the striker-rod impact scenario based on the rigid-perfectly plastic-locking (R-P-P-L) model. The predictions of the proposed model are compared to FE simulations by using the realistic R-PLH material model based on the actual experimentally derived stress-strain curves. The predictions of the dependence of critical length, critical impact velocity and impact force of the cellular foam rod with temperature gradient on the temperature distribution and the relation between critical impact velocity of an aluminum foam rod with a given length and the temperature contrast at its two ends are compared well with the numerical simulations results. Key

Key words: solidmechanics, cellularmaterialsacrificialcladding, temperaturegradient, crashworthiness, shockwavepropagation, optimizationdesign

中图分类号: