欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (S1): 250707-.doi: 10.12382/bgxb.2025.0707

• • 上一篇    下一篇

引信高动态MEMS零件增材内填充与外表面形貌协同优化试验

吕斯宁1, 柴怡琛1, 冯恒振1,*(), 娄文忠1,**(), 李诗怡1, 肖川1,2, 任杰2   

  1. 1 北京理工大学 机电动态控制重点实验室, 北京 100081
    2 中国兵器科学研究院, 北京 100089
  • 收稿日期:2025-08-01 上线日期:2025-11-06
  • 通讯作者:
  • 基金资助:
    国家自然科学基金青年基金(62304022); 机电动态控制重点实验室开放课题基金(614260125010104)

Experimental Research on Collaborative Optimization of Additive Internal Filling and External Surface Morphology of High-dynamic MEMS Components for Fuze

LÜ Sining1, CHAI Yichen1, FENG Hengzhen1,*(), LOU Wenzhong1,**(), LI Shiyi1, XIAO Chuan1,2, REN Jie2   

  1. 1 Science and Technology on Electromechanical Dynamic Control LaboratoryBeijing Institute of Technology, Beijing 100081, China
    2 Ordnance Science and Research Academy of China, Beijing 100089, China
  • Received:2025-08-01 Online:2025-11-06

摘要:

金属增材制造技术已成为快速成型精密制造特种高动态(高过载、高应变率)微机电(Micro Electromechanical System,MEMS)异构复杂零件的重要手段。以选择性激光熔化(Selective Laser Melting,SLM)为技术手段,针对特种MEMS零件在增材制造过程中会出现的致密度差、表面形貌难以控制等微观力学缺陷问题,开展引信高动态MEMS零件增材内填充与外表面形貌协同优化试验研究。以内填充效果和外表面形貌为主要切入点,采用正交试验和单因素控制变量试验方法,开展了两轮SLM多参数工艺的试验制备并进行极差和方差分析,得到了“致密度主要受熔池形成阶段的能量输入控制,而粗糙度更多取决于熔池凝固阶段的动力学行为”的结论,并分析了影响致密度与表面粗糙度的工艺参数排序,得到协同最优工艺参数:激光功率130W,扫描速度700mm/s,扫激光直径0.045mm,扫描间距0.06mm。基于结果参数开展了MEMS零件加工和性能测试,测试得到致密度可以达到99.19%,同时表面粗糙度可以达到5.45μm;抗拉强度达到435MPa。结果满足引信高动态环境使用要求,可为后续同类型薄壁类MEMS零件的加工提供参数依据,提升设计迭代优化效率。

关键词: 高动态MEMS零件, 增材制造, 选区激光熔化, 内填充, 表面形貌, 多参数优化

Abstract:

Metal additive manufacturing is recognized as a crucial technology for the rapid prototyping and precision fabrication of special high-dynamic (high overload and high strain rate) micro-electro-mechanical system (MEMS) components,particularly for heterogeneous and complex components.Selective laser melting (SLM) serves as the technical approach to address the microscopic mechanical defects due to the density variations,the difficulty in controlling surface morphology and other factors during the additive manufacturing process of specialized MEMS components.A comprehensive experimental investigation is conducted to optimize the additive filling and surface morphology of high-dynamic MEMS components,focusing on the internal filling effects and external surface morphology.The orthogonal and single-factor control variable experiments are used to optimize the SLM multi-parameter process and perform the range and variance analyses.The study concludes that the density is primarily governed by the energy input during the formation of melt pool,while the surface roughness is predominantly determined by the dynamic behavior during the solidification of melt pool.The process parameters influencing the density and surface roughness are ranked,and the optimal synergistic process parameters are determined:a laser power of 130W,a scanning speed of 700mm/s,a laser spot diameter of 0.045mm,and a scan spacing of 0.06mm.MEMS components are fabricated and test based on these parameters.The performance testing shows that the density can reach 99.19% is achieved,while the surface roughness is reduced to 5.45μm.Additionally,a tensile strength of 435MPa is recorded.These results meet the requirements for the use of fuze in the high dynamic environments and provide the valuable process parameters for the fabrication of similar thin-walled MEMS components,thereby enhancing the efficiency of design iteration and optimization.

Key words: high-dynamic MEMS component, additive manufacturing, selective laser melting, internal filling, surface morphology, multi-parameter optimization