| [1] |
WANG T, ZHANG S, GU X P. A trend-based approach for situation awareness in power systems[J]. International Transactions on Electrical Energy Systems, 2017, 27(12).
|
| [2] |
REN L J, WANG T, SEKHARI SEKLOULI A, et al. A review on missing values for main challenges and methods[J]. Information Systems, 2023, 119:102268.
|
| [3] |
郑文迪, 聂建雄, 邵振国, 等. 智能配电网状态估计研究现状和展望[J]. 电力系统及其自动化学报, 2021, 33(4):8-16.
|
|
ZHENG W D, NIE J X, SHAO Z G, et al. Research status and prospect of state estimation for smart distribution network[J]. Proceedings of the CSU-EPSA, 2021, 33(4):8-16. (in Chinese)
|
| [4] |
DE MELO V H P, MONTEIRO A L, ASCARI L B, et al. Review of power system state estimation and maturity level of market solutions:preceding steps[J]. Journal of Control,Automation and Electrical Systems, 2024, 35(4):702-719.
|
| [5] |
LIU Y, LIN Y Z, YUE K. Modern power system state estimation methods[J]. Encyclopedia of Electrical and Electronic Power Engineering, 2023, 2:259-277.
|
| [6] |
YANG T, LIU G L, WANG Y, et al. A tensor completion algorithm for missing user data in spot trading of electricity market[J]. Computers and Electrical Engineering, 2025, 122:109988.
|
| [7] |
ESPOSITO R, CERRATO M, LOCATELLI M. Partitioned least squares[J]. Machine Learning, 2024, 113(9):6839-6869.
|
| [8] |
晁婉萌, 刘灏, 毕天姝, 等. 考虑 N-1 故障重构下的配电网 PMU 优化配置方法[J/OL]. 中国电机工程学报, 2025(2025-03-06)[2025-06-16]. https://link.cnki.net/urlid/11.2107.tm.20250305.1328.006.
|
|
CHAO W M, LIU H, BI T S, et al. Optimal configuration method of pmus in distribution network considering N-1 fault reconfiguration[J/OL]. Proceedings of the CSEE, 2025(2025-03-06)[2025-06-16]. https://link.cnki.net/urlid/11.2107.tm.20250305.1328.006. in Chinese)
|
| [9] |
吉兴全, 姜海洋, 张玉敏, 等. 考虑网络重构的三相不平衡配电网μPMU组合优化配置[J]. 电力系统自动化, 2025, 49(3):145-155.
|
|
JI X Q, JIANG H Y, ZHANG Y M, et al. Combined optimal configuration of μpmus in three-phase unbalanced distribution networks considering network reconfiguration[J]. Automation of Electric Power Systems, 2025, 49(3):145-155. (in Chinese)
|
| [10] |
郑骁麟, 王天昊, 王凯奇, 等. 配电系统伪量测数据增强方法[J/OL]. 电力系统及其自动化报, 2025(2025-04-10)[2025-06-16].https://doi.org/10.19635/j.cnki.csu-epsa.001607
|
|
ZHENG X L, WANG T H, WANG K Q, et al ZHANG X J., Pseudo-measurement data enhancement method for distribution systems[J/OL]. Proceedings of the CSU-EPSA, 2025(2025-04-10)[2025-06-16].https://doi.org/10.19635/j.cnki.csu-epsa.001607 in Chinese)
|
| [11] |
王玥, 于越, 郭嘉辉, 等. 基于改进 Crossformer 伪量测构建的主动配电网预测辅助状态估计方法[J]. 高电压技术, 2025, 51(6):3029-3042.
|
|
WANG Y, YU Y, GUO J H, et al. Predictive auxiliary state estimation method for active distribution network based on improved crossformer pseudo-measurement construction[J]. High Voltage Engineering, 2025, 51(6):3029-3042. (in Chinese)
|
| [12] |
SUN B, XU Y J, GU W, et al. PMU data compression in power systems using adaptive rank-based tensor ring[J]. IEEE Transactions on Industrial Informatics, 2025, 21(7):5264-5275.
|
| [13] |
蒋睿珈, 余晓丹, 靳小龙, 等. 基于交替最小化矩阵补全及滑动平均的配电网时空量测数据补齐方法[J]. 电力自动化设备, 2025, 45(8):20-27.
|
|
JIANG R J, YU X D, JIN X L, et al. A method for filling in spatio-temporal measurement data of distribution network based on alternating minimization matrix completion and moving average[J]. Electric Power Automation Equipment, 2025, 45(8):20-27. (in Chinese)
|
| [14] |
王子馨, 胡俊杰, 刘宝柱. 基于长短期记忆网络的电力系统量测缺失数据恢复方法[J]. 电力建设, 2021, 42(5):1-8.
doi: 10.12204/j.issn.1000-7229.2021.05.001
|
|
WANG Z X, HU J J, LIU B Z. A Method for recovering missing measurement data in power systems based on long short-term memory networks[J]. Electric Power Construction, 2021, 42(5):1-8. (in Chinese)
|
| [15] |
马彬喻, 杨军, 彭晓涛, 等. 基于改进 CVAE-GAN的电力系统暂态稳定评估样本增强方法[J/OL]. 电力自动化设备, 2025(2025-05-08)[2025-06-16].https://doi.org/10.16081/j.epae.202504023
|
|
MA B Y, YANG J, PENG X T, et al. Sample enhancement method for power system transient stability assessment based on improved CVAE-GAN[J/OL]. Electric Power Automation Equipment, 2025(2025-05-08)[2025-06-16].https://doi.org/10.16081/j.epae.202504023 in Chinese)
|
| [16] |
吕奇峰, 陈颖, 肖谭南, 等. 基于图注意力网络的配电网超分辨率量测生成方法[J]. 电力系统自动化, 2023, 47(5):26-34.
|
|
LU Q F, CHEN Y, XIAO T N, et al. A method for generating super-resolution measurements in distribution networks based on graph attention networks[J]. Automation of Electric Power Systems, 2023, 47(5):26-34. (in Chinese)
|
| [17] |
邱凯乐. 图信号处理综述[J]. 物联网技术, 2025, 15(5):111-113.
|
|
QIU K L. A survey of graph signal processing[J]. Internet of Things Technology, 2025, 15(5):111-113. (in Chinese)
|
| [18] |
CAPUTO A. Vector-valued Graph Signal Processing[Z].arXiv:2505.22325,2025.
|
| [19] |
YOU C, ZHAO Y Q, HOU S Q, et al. Research on centre of inertia based frequency sampling and system frequency distribution characteristics[J]. IEEE Access, 2024, 12:71371-71378.
|
| [20] |
SONG W C, LU C, LIN J J, et al. A low-quality PMU dataidentification method with dynamic criteria based on spatial-temporal correlations and random matrices[J]. Applied Energy, 2023, 343:121213.
|
| [21] |
HAMMER F, BARBER S. Data imputation for SCADa data using graph neural networks[J]. Journal of Physics:Conference Series, 2025, 3025(1):12014.
|
| [22] |
LIU J G, TAN H J, ZHAO R F, et al. Applications of graph computing and graph neural networks in power systems:a survey[C]//Proceedings of the 2024 China International Conference on Electricity Distribution (CICED). Hangzhou,China:IEEE,2024:543-548.
|
| [23] |
SAXENA A, ASHA V, LALITHA G, et al. Expanding horizons:graph theory’s multifaceted applications[J]. E3SWeb of Conferences, 2024, 507:1015.
|