欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于动态行为树的无人机自主环境探索算法设计

顾程毓1,林时尧2,徐小斌1*,范军芳1   

  1. 1. 北京信息科技大学 自动化学院; 2.中国兵器科学研究院
  • 收稿日期:2025-06-12 修回日期:2025-09-14
  • 基金资助:
    国家自然科学基金项目(52402442);北京市自然科学基金项目(4254095);中国科协青年人才托举工程(YESS20230098)

Autonomous UAV Exploration in Unknown Environments Based on Dynamic Behavior Trees

GU Chengyu1, LIN Shiyao2, XU Xiaobin1*, FAN Junfang1   

  1. 1. School of Automation, Beijing Information Science and Technology University; 2. Chinese Academy of Ordnance Sciences
  • Received:2025-06-12 Revised:2025-09-14

摘要: 针对无人机在未知、GPS拒止环境下自主探索时面临的环境动态性与实时复杂决策挑战,提出一种基于动态行为树(Dynamic Behavior Tree, DBT)的自主探索算法。该算法前端构建轻量化时变体素概率地图模型,并融合轻量化地图引导的改进切线爬虫实时路径规划器,通过环境感知优化实现安全高效导航。后端核心采用基于DBT的自适应决策机制,创新性地引入动态权重驱动的拓扑重构,采用层次化设计和模块化管理,赋予系统算法调度能力与主动响应环境变化的智能决策能力。通过ROS2/Gazebo平台的仿真验证,DBT在感知、决策与响应方面均表现出较好性能,与有限状态机方法相比,DBT算法的探索覆盖率提升了2.33%~12%,平均探索覆盖率提升了1%~13%,有效提升了无人机在未知环境中自主探索的效率、鲁棒性和智能化水平。

关键词: 动态行为树, 未知环境, 自适应决策, 改进Tangent Bug

Abstract: To address the challenges of environmental dynamics and complex real-time decision-making encountered by Unmanned Aerial Vehicles (UAVs) during autonomous exploration in unknown, GPS-denied environments, this paper proposes an autonomous exploration algorithm based on Dynamic Behavior Trees (DBT). The front-end of this algorithm constructs a lightweight time-varying voxel probability map model and integrates an improved Tangent Bug real-time path planning algorithm guided by the lightweight map, achieving safe and efficient navigation through optimized environmental perception. The core of the back-end employs an adaptive decision-making mechanism based on DBT, innovatively introducing dynamic weight-driven topological reconfiguration. It utilizes a hierarchical design and modular management to endow the system with algorithm scheduling capabilities and the intelligent decision-making ability to proactively respond to environmental changes. Simulation experiments conducted on the ROS2/Gazebo platform demonstrate that the DBT approach exhibits superior performance in perception, decision-making, and responsiveness. Compared with the finite state machine method, the exploration coverage of DBT algorithm increased by 2.33%~12%, and the average exploration coverage increased by 1%~13%, significantly enhancing the UAV's efficiency, robustness, and intelligence level in autonomous exploration within unknown environments.

Key words: dynamic behavior tree, unknown environment, adaptive decision making, improved tangent bug

中图分类号: