欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

不同聚类算法在抗冲击有限元模拟结果处理中的应用及甄选

陶雨波1,林心怡1,何洁1,袁子舜1,2,3*,徐望4   

  1. 1. 浙江理工大学 服装学院,浙江 杭州 310018;2. 浙江理工大学 浙江省服装工程技术研究中心,浙江 杭州 310018;3. 浙江理工大学 丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室,浙江 杭州 310018;4. 北卡罗莱纳州立大学 威尔逊纺织学院,北卡罗莱纳州 罗利 27695
  • 收稿日期:2025-03-26 修回日期:2025-07-12

Application and Selection of Different Clustering Algorithms in the Processing of Impact-resistant Finite Element Simulation Results

TAO Yubo1,LIN Xinyi1,HE Jie1,YUAN Zishuan1,2,3*, XU Wang4   

  1. 1.School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China;2.Apparel Engineering Research Center of Zhejiang Province, Hangzhou 310018, Zhejiang, China;3. Zhejiang Provincial Engineering Laboratory of Clothing Digital Technology, Hangzhou 310018, Zhejiang, China;4. Wilson College of Textiles, North Carolina State University, Raleigh 27695, North Carolina, US
  • Received:2025-03-26 Revised:2025-07-12

摘要: 为探究不同聚类算法在处理有限元结果应力云图时的表现,研究建立了单层Twaron®平纹织物弹道冲击有限元模型,以其应力分布结果图像为例,采用k-means、GMM、Mean-shift、DBSCAN4种不同的聚类算法对应力云图进行聚类处理和结果对比分析。研究结果表明:Mean-shift和DBSCAN聚类算法并不适用于处理大量有限元应力云图;k-means和GMM聚类算法相较于传统手动处理效率提升了74.24倍和172.64倍,但GMM聚类算法在图像色彩无明显区分时会产生误差。k-means聚类算法在保证高效的同时,误差仅在0.85%以内,因此,k-means聚类算法是这4种算法中最适用于大量应力云图的快速、客观、定量的分析。使用该方法测量出单层Twaron®平纹织物在受到冲击的1~15 μs内,0~600 MPa应力区间面积减小,应力面积变化速率为5.61×107 mm2/s;600~1200 MPa应力区间面积增大,应力面积变化速率为5.27×107 mm2/s。

关键词: 应力分布, 弹道冲击, 聚类算法, 计算机视觉, 有限元分析

Abstract:


In order to investigate the performance of different clustering algorithms in processing the finite element resultant stress cloud, a single-layer ballistic impact finite element model of Twaron® plain fabric was established in the study, and four different clustering algorithms, namely, k-means, GMM, Mean-shift, and DBSCAN, were used to cluster the stress cloud and analyze the results comparatively with the resultant images of the stress distributions as an example. The results show that: Mean-shift and DBSCAN clustering algorithms are not suitable for processing a large number of finite element stress maps; k-means and GMM clustering algorithms improve the efficiency of 74.24 and 172.64 times compared with the traditional manual processing, but GMM clustering algorithms produce errors when the color of the image is not clearly differentiated; k-means clustering algorithms ensure high efficiency, while the error is only 0.5 and 1.0 times, respectively; and k-means clustering algorithms are more efficient than traditional manual processing. The k-means clustering algorithm guarantees high efficiency while the error is only within 0.85%, therefore, the k-means clustering algorithm is the most suitable among these four algorithms for fast, objective and quantitative analysis of a large number of stress cloud maps. Using this method, it was measured that the area of the stress interval of single-layer Twaron® plain fabrics decreased with a stress area change rate of 5.61×107 mm2/s for 0 ~600 MPa, and the area of the stress interval increased with a stress area change rate of 5.27×107 mm2/s for 600 ~1200 MPa within 1~15 μs of the impacts.

Key words: stress distribution, ballistic impact, clustering algorithms, computer vision, finite element analysis

中图分类号: