欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

发射环境下钕铁硼合金的力磁退化特性

李雷,杨国来*   

  1. 南京理工大学 机械工程学院, 江苏 南京 210094
  • 收稿日期:2025-03-24 修回日期:2025-08-17
  • 基金资助:
    国家自然科学基金青年基金项目(52305155); 江苏省江苏省基础研究计划青年基金项目(BK20230904);国家重点实验室开放基金(JSS-GF-095-02);中央高校基本科研业务费(30925010502)

The Magnetomechanical Evolution and Decay of NdFeB Alloys in Launch Environment

LI Lei, YANG Guolai*   

  1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2025-03-24 Revised:2025-08-17

摘要: 为从根本上解决传统液压式火炮制退机的液体泄漏问题,本文探究钕铁硼强磁材料在火炮冲击环境下的力磁稳定性,以支撑电涡流阻尼器在制退机中的创新应用。通过理论建模与数值计算揭示火炮发射环境下钕铁硼的力磁特性。针对目前钕铁硼材料动态力磁退化规律不清的现状,基于热力学与损伤演化理论,建立一种适用于脆性材料的力磁本构;开展动态力学与冲击去磁实验,以实验过程中表现出的材料特性数据为基础,完成了力磁本构关键参数的辨识;搭建火炮上装动力学计算模型,将建立的力磁本构通过子程序嵌入动态显式计算,提取不同位置、不同时刻钕铁硼的力磁性能衰减数据进行分析。研究结果表明:力磁退化最严重的位置在最右侧永磁体内环,最大去磁量为0.1668T。不仅为电涡流制退机的使用和维护提供有效指导,更为钕铁硼材料在其他冲击环境中的应用奠定了理论基础。

关键词: 钕铁硼, 电涡流制退机, 冲击环境, 力磁衰退

Abstract: To fundamentally resolve fluid leakage issues in traditional hydraulic artillery recoil mechanisms, this study investigates the magneto-mechanical stability of neodymium iron boron (NdFeB) high-strength magnetic materials under artillery impact environments, thereby enabling innovative applications of eddy current dampers in recoil systems. This paper explores the magnetomechanical properties of NdFeB under impact by theoretical modeling and numerical computations. Aiming at the current situation of unclear dynamic magnetomechanical degradation law of NdFeB, a new kind of magnetomechanical constitutive model suitable for brittle materials was described based on thermodynamic theory and damage constitutive. The dynamic mechanics and impact demagnetization experiments were carried out, and the identification of the key parameters of the magnetomechanical constitutive model was completed on the basis of the experimental data. The dynamic calculation model of artillery was built, with constitutive model embedded in the dynamic explicit calculation via the subroutine. The magnetomechanical decay of the NdFeB at different positions and different times was extracted. The results show that the most serious degradation occurs in the inner ring of the rightmost permanent magnet, and the maximum demagnetization is 0.1668T. This study not only gives effective guidance for the use of the electromagnetic brake, but also provides an important theoretical support for the application of NdFeB materials in other impact environments.

Key words: NdFeB, electromagnetic brake, impact environment, magnetomechanical decay

中图分类号: