欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

面向多类型激光雷达的非结构化环境负障碍物检测

武丹凤1,2,陈同舟3,匡敏驰4*,宋春森5,周芬芬1,2,张学艳1,2   

  1. 1.北京联合大学 北京市信息服务工程重点实验室,北京 100101;2. 北京联合大学 机器人学院,北京 100027; 3. 桂林电子科技大学 机电工程学院,广西 桂林 541004; 4. 清华大学 精密仪器系,北京 100084;5. 清华大学 天津高端装备研究院,天津 300300
  • 收稿日期:2025-03-20 修回日期:2025-08-26
  • 基金资助:
    时空信息精密感知技术全国重点实验室开放基金资助项目(STL2023-B-06-01(K));北京联合大学科研项目资助项目(ZK20202201)

Detection of Negative Obstacles in Unstructured Environments for Multi-type LiDAR

WU Danfeng1,2, CHEN Tongzhou3, KUANG Minchi4*, SONG Chunsen5, ZHOU Fenfen1,2, ZHANG Xueyan1,2   

  1. 1.Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China; 2.College of Robotics, Beijing Union University, Beijing 100027, China; 3. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi ,China; 4. Department of Precision Instrument, Tsinghua University, Beijing 100084, China; 5. Tianjin Research Institute for Advanced Equipment, Tsinghua University, Tianjin 300300, China
  • Received:2025-03-20 Revised:2025-08-26

摘要: 地面无人车辆在非结构化环境中行驶时,负障碍物对车辆行驶安全构成了重大威胁。然而,现有的负障碍物检测研究中,基于相机的检测方法不能良好适用于光照条件差、背景复杂的非结构化环境,而基于激光雷达的负障碍物检测方法大多从机械式激光雷达线束特性出发进行设计,通用性差。为此,提出了一种兼容性强且具备良好扩展性的负障碍物检测方法,能够适应不同类型的激光雷达,并实现高精度的负障碍物检测。方法针对点云数据进行预处理,提取地面感兴趣区域并进行点云的姿态矫正;采用自适应分辨率极坐标栅格化技术,增强点云数据的空间表示能力;设计了负障碍物栅格特征描述子,结合点云的空洞特性、高度差异和最小高度等多个特征,提取潜在的负障碍物区域;引入多帧融合策略,通过地图重投影和基于贝叶斯规则的概率更新,最终输出高精度的负障碍物表面占据范围。实验结果表明,所提出的方法同时适用于不同扫描方式的激光雷达,能够在复杂非结构化环境中有效识别负障碍区域,具有良好的通用性与检测精度。

关键词: 地面无人车辆, 激光雷达, 负障碍物, 非结构化环境

Abstract: When Unmanned ground vehicles operate in unstructured environments, negative obstacles pose a significant threat to vehicle safety. However, in the existing research on negative obstacle detection, camera based detection methods are not well suited for unstructured environments with poor lighting conditions and complex backgrounds; LiDAR based detection methods are mostly designed based on the characteristics of mechanical LiDAR harnesses and have poor universality. Therefore, a highly compatible and scalable negative obstacle detection method has been proposed, which can adapt to different types of LiDAR and achieve high-precision negative obstacle detection. The method preprocesses point cloud data, extracts ground regions of interest, and performs point cloud pose correction; Adopts adaptive resolution polar coordinate rasterization technology to enhance the spatial representation capability of point cloud data; Designs a negative obstacle grid feature descriptor, combines with multiple features such as the hollow characteristics, height differences, and minimum height of point clouds, to extract potential negative obstacle regions; Introduces a multi-frame fusion strategy, and outputs high-precision negative obstacle surface occupancy range through map reprojection and Bayesian rule-based probability updates. The experimental results show that the proposed method is applicable to different scanning modes of LiDAR, and can effectively identify negative obstacle areas in complex unstructured environments, with good universality and detection accuracy.

Key words: unmanned ground vehicles, lidar, negative obstacles, unstructured environment

中图分类号: