欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于堆叠集成学习的履带车辆液力机械综合传动装置功率损失预测

李慎龙1,张金豹1*,王立勇2,张金乐1,王敏1   

  1. 1.中国北方车辆研究所; 2.北京信息科技大学 机电系统测控北京市重点实验室
  • 收稿日期:2025-03-12 修回日期:2025-08-09
  • 基金资助:
    国家自然科学基金项目(52175074)

Power Loss Prediction of Hydro-Mechanical Integrated Transmission Device in Tracked Vehicle Based on Stacking Ensemble Learning

LI Shenlong1, ZHANG Jinbao1*, WANG Liyong2, ZHANG Jinle1, WANG Min1   

  1. 1. China North Vehicle Research Institute; 2. Beijing Key Laboratory of Measurement and Control of Mechanical and Electrical System, Beijing Information Science & Technology University
  • Received:2025-03-12 Revised:2025-08-09

摘要: 功率损失是评估履带车辆液力机械综合传动装置性能的关键参数之一。通过预测不同工作条件下的功率损失,可以更全面地评价液力机械综合传动装置的效能,从而确保履带车辆具有良好的机动性。提出一种基于堆叠集成学习的方法,用于预测液力机械综合传动装置在多种工况下的功率损失。研究利用75辆履带车辆的多工况效率数据,通过堆叠的方式集成随机森林、LightGBM、AdaBoost、CatBoost与XgBoost等多种算法,实现对液力机械综合传动装置功率损失的有效预测。还运用夏普利加性解释值分析各个因素以及各模型对于功率损失预测的影响程度。实验结果显示,在训练集上,功率损失预测结果的均方根误差为6.6,拟合优度达到0.976;在测试集上,这些指标分别为8.920和0.961。进一步分析发现,输入扭矩是影响功率损失的主要因素,且在堆叠集成框架中,随机森林算法对提高预测精度贡献最大。

关键词: 液力机械综合传动装置, 功率损失预测, 堆叠集成学习, 贡献解释

Abstract: Power loss is one of the critical parameters for evaluating the performance of the hydro-mechanical integrated transmission device (HMITD) in tracked vehicles. By predicting power losses under different operating conditions, a more comprehensive assessment of the HMITDs can be achieved, thereby ensuring the good mobility of tracked vehicles. This paper proposes a method based on stacked ensemble learning for predicting power losses of the HMITDs under various working conditions. The study utilizes efficiency data from 75 tracked vehicles under multiple working conditions and integrates multiple algorithms, including Random Forest, LightGBM, AdaBoost, CatBoost, and XgBoost, through stacking to effectively predict power losses of the HMITD. Additionally, SHapley Additive exPlanations (SHAP) values are employed to analyze the impact of various factors and models on power loss prediction. The experimental results show that on the training set, the root mean square error (RMSE) of power loss prediction is 6.6, and the goodness of fit (R²) reaches 0.976; while on the test set, these metrics are 8.92 and 0.961, respectively. Further analysis reveals that input torque is the primary factor affecting power losses, and within the stacked ensemble framework, the Random Forest algorithm contributes the most to improving prediction accuracy. Keywords: hydro-mechanical integrated transmission device; power loss prediction; stacking ensemble learning; contribution explanation

Key words: hydro-mechanical integrated transmission device, power loss prediction, stacking ensemble learning, contribution explanation

中图分类号: