欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于Mamba赋能的三支路生成对抗网络的红外与可见光图像融合

章洋洋,康家银*,马寒雁,张文慧,王怀友   

  1. (江苏海洋大学 电子工程学院,江苏 连云港 222005)
  • 收稿日期:2025-02-06 修回日期:2025-05-30
  • 通讯作者: *通信作者邮箱:kangjy@jou.edu.cn
  • 基金资助:
    国家自然科学基金项目(62271236); 研究生科研与实践创新计划项目(KYCX24-3682); 研究生科研与实践创新计划项目(SJCX24-2105)

Infrared and Visible Image Fusion Based on Mamba-empowered Triple-branch Generative Adversarial Network

ZHANG Yangyang, KANG Jiayin*, MA Hanyan, ZHANG Wenhui, WANG Huaiyou   

  1. (School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu China)
  • Received:2025-02-06 Revised:2025-05-30

摘要: 现有的红外与可见光图像融合方法大都采用Transformer提取图像中的全局特征,但Transformer的自注意机制需要计算每对输入之间的相关性,在处理长序列时会导致计算复杂度急剧增加。相较之下,Mamba是一种能够有效建模远程依赖的轻量化模型。为此,本文提出一种基于Mamba赋能的三支路生成对抗网络的红外与可见光图像融合方法。所提方法总体由一个生成器和两个判别器构成。具体地,在生成器网络中,设计了三条既独立又协同工作的特征提取和融合支路,即红外支路、可见光支路、及中间特征融合支路。其中,红外和可见光支路通过浅层特征提取模块和Mamba块分别提取红外和可见光图像中的全局特征;与此同时,将红外支路和可见光支路提取的全局特征逐级集成到中间融合支路的卷积模块中,从而实现局部特征和全局特征的充分交互和融合。此外,通过生成器与双判别器(红外判别器和可见光判别器)不断地对抗训练,使得生成器生成一幅目标显著和纹理清晰的融合图像。在公开数据集上的大量实验结果表明,本文所提方法在定性的视觉效果和定量的客观指标两方面均总体优于其他先进的对比方法。

关键词: 图像融合, 红外图像, 生成对抗网络, Mamba

Abstract: Most of the existing methods for infrared and visible image fusion use Transformer to extract global features from images. However, the Transformer adopting self-attention mechanism needs to calculate the correlation between each pair of inputs, leading a sharp increase in computational complexity while processing long sequences. In contrast, Mamba is a lightweight model that can effectively model long-distance dependencies. To this end, this paper proposes a method for infrared and visible image fusion based on Mamba-empowered generative adversarial network with triple branches. The proposed method consists of a generator and two discriminators. Specifically, in the generator network, three independent and cooperative branches for feature extraction and fusion are designed, namely, the infrared branch, the visible branch, and the intermediate feature fusion branch are designed. More particularly, the infrared and visible branches extract global features respectively from the infrared and visible images through shallow feature extraction modules and Mamba blocks. Meanwhile, the global features extracted from the infrared branch and visible branch are hierarchically integrated into the convolutional modules of the intermediate fusion branch, thereby achieving fully interacting and merging between the local and global features. Furthermore, generating a fusion image with salient target and clear texture via competitively training the generator against two discriminators (infrared discriminator and visible discriminator). The extensively experimental results on public datasets show that the proposed method outperforms other state-of-the-art methods in both qualitative visual effects and quantitative objective metrics.

Key words: image fusion, infrared image, generative adversarial network, Mamba