欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于协方差矩阵重构的水下无人航行器舷侧阵自干扰抑制

梁国龙1,2,3,陈宇1,2,3,邱龙皓1,2,3*,李赢1,2,3,杜致尧1,2,3,郑擎宇1,2,3   

  1. 1.哈尔滨工程大学 水声技术全国重点实验室; 2.海洋信息获取与安全工信部重点实验室(哈尔滨工程大学)工业和信息化部; 3.哈尔滨工程大学 水声工程学院
  • 收稿日期:2024-11-29 修回日期:2025-09-11
  • 基金资助:
    国家自然科学基金(62401173)

Self-Interference Suppression for UUV Flank Array Based on Covariance Matrix Reconstruction

LIANG Guolong1,2,3,CHEN Yu1,2,3,QIU Longhao1,2,3*,LI Ying1,2,3,DU Zhiyao1,2,3,ZHENG Qingyu 1,2,3   

  1. 1. National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University; 2. Key Laboratory of Marine Information Acquisition and Security (Harbin Engineering University), Ministry of Industry and Information Technology; 3. College of Underwater Acoustic Engineering, Harbin Engineering University
  • Received:2024-11-29 Revised:2025-09-11

摘要: 水下无人航行器(Underwater Unmanned Vehicle,UUV)作为一种智能水下作业系统,其运行过程中产生的自噪声将对舷侧阵声纳造成强烈干扰。当前主流的自适应波束形成技术主要用于抑制远场干扰,对于UUV自干扰这一类近场强干扰的适应性不足。针对这一问题,提出一种基于协方差矩阵重构的UUV自干扰抑制方法。由于舷侧阵与UUV的刚性连接特性,当工况不变时,UUV自干扰协方差矩阵在时间上具有高度稳定性。基于此特性,新方法首先利用预采集数据估计自干扰协方差矩阵,然后利用该矩阵对远场干扰和噪声的协方差矩阵进行修正,从而构建干扰加噪声协方差矩阵,以便计算自适应波束形成器的权重。实验结果显示,与当前主流自适应波束形成方法相比,新方法在输入信噪比高于0 dB时表现更好;与矩阵滤波类方法相比,新方法可以将干扰抑制效果提升约6 dB。

关键词: 水下无人航行器, 自干扰抑制, 阵列信号处理, 被动声纳

Abstract: The underwater unmanned vehicle (UUV), as an intelligent underwater operational system, generates self-noise during operation that can significantly interfere with the side-array sonar. The current mainstream adaptive beamforming techniques are primarily designed to suppress far-field interference and exhibit insufficient adaptability for addressing UUV self-interference, which is a type of strong near-field interference. To address this issue, this study proposes a UUV self-interference suppression algorithm based on covariance matrix reconstruction. Given the rigid connection between the side array and the UUV, the covariance matrix of the UUV self-interference exhibits high temporal stability under constant operating conditions. Leveraging this characteristic, the algorithm first estimates the self-interference covariance matrix using pre-collected data, and then utilizes this matrix to modify the covariance matrix of far-field interference and noise. Consequently, an interference-plus-noise covariance matrix is constructed to compute the weights of the adaptive beamformer. Experimental results indicate that, compared to current mainstream adaptive beamforming methods, this algorithm performs better when the input signal-to-noise ratio exceeds 0 dB. Moreover, compared to matrix filtering methods, this approach can enhance interference suppression by approximately 6 dB.

Key words: unmanned underwater vehicle, self-interference suppression, array signal processing, passive sonar

中图分类号: