欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于RD图和自适应特征选择网络的UWB雷达地面目标识别方法

黄文宇1,熊刚1*(),李龙龙1,张淑宁2,郁文贤1   

  1. (1. 上海交通大学 电子信息与电气工程学院, 上海 200240; 2. 南京理工大学 电子工程与光电技术学院 , 江苏 南京 210094)
  • 收稿日期:2024-11-24 修回日期:2025-07-01
  • 通讯作者: *邮箱:gxiong@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62071293)

UWB Radar Ground Target Recognition Method Based on Range Doppler Map and Adaptive Feature Selection Network

HUANG Wenyu1,XIONG Gang1*(), LI Longlong1, ZHANG Shuning2, YU Wenxian1   

  1. (1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China)
  • Received:2024-11-24 Revised:2025-07-01

摘要: 针对冲击脉冲超宽带雷达(Impulse Radio Ultra-Wideband Radar, IR-UWBR)在小样本条件及探测场景复杂等挑战下导致目标识别能力不足的问题,提出基于距离-多普勒图与自适应特征选择网络(Range-Doppler Adaptive Feature Selection Network, RDAFSN)的运动目标识别方法。在分析IR-UWBR在慢时间维接收回波信号规律的基础上,建立了IR-UWBR多普勒信息提取模型。同时,深入分析运动目标距离-多普勒图由于背景信息复杂、目标种类多导致图像空间特征差异大的特性,构建基于坐标软阈值去噪模块与空间自适应下采样层的RDAFSN目标识别模型。实验结果表明,所提方法能够有效提高小样本条件下对运动目标的分类能力,对不同场景下的同类目标均有较好的识别效果,相比于常用于地面目标识别的CNN-BiLSTM-DNN和图像编码深度网络,识别准确率分别提高了3.64%和7.53%。

关键词: 脉冲超宽带雷达, 距离-多普勒图, 自适应特征选择网络, 地面目标识别

Abstract: Aiming at the problem that Impulse Radio Ultra-Wideband Radar (IR-UWBR) has insufficient target recognition ability under the challenges of small sample conditions and complex detection scenes, a moving target recognition method based on range-Doppler map and adaptive feature selection network (RDAFSN) is proposed. The IR-UWBR Doppler information extraction model is established based on the analysis of the law of IR-UWBR receiving echo signals in the slow time dimension. At the same time, the characteristics of the moving target range-Doppler map, which has large differences in image spatial features due to complex background information and many target types, are deeply analyzed, and the RDAFSN target recognition model based on coordinate soft threshold denoising module and spatial adaptive down sampling layer is constructed. Experimental results show that this method can effectively improve the classification ability of moving targets under small sample conditions, and has good recognition effects on similar targets in different scenes. Compared with CNN-BiLSTM-DNN and image coding deep network commonly used for ground target recognition, the recognition accuracy is improved by 3.64% and 7.53% respectively.

Key words: pulse ultra-wideband radar, range-doppler map, adaptive feature selection network, ground target recognition

中图分类号: