欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

越野环境下履带车辆的障碍识别与可通行性分析

王浩东1,马彪1,陈漫1*,于亮1,谭赟璐1,刘宇键2   

  1. (1. 北京理工大学 机械与车辆学院, 北京 100081; 2. 中兵智能创新研究院有限公司 智能系统总部, 北京 100071)
  • 收稿日期:2024-10-22 修回日期:2025-08-21
  • 通讯作者: *邮箱:turb911@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(52175037、52205047);北京理工大学前沿交叉计划项目(2024CX11006)

Obstacle Recognition and Traversability Analysis of Off-road Environments for Tracked Vehicles

WANG Haodong1, MA Biao1, CHEN Man1*, YU Liang1, TAN Yunlu1, LIU Yujian2   

  1. (1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Intelligent Systems Headquarters, China North Artificial Intelligence & Innovation Research Institute, Beijing 100071, China)
  • Received:2024-10-22 Revised:2025-08-21

摘要: 针对现有可通行性分析方法对复杂越野环境下障碍物识别不完整、泛化性差的问题,提出基于开放词汇语义分割的障碍识别算法,可提取车辆周围环境中障碍物和地形的语义标签,能有效识别复杂越野环境下的未知障碍物,在数据集和实车环境中验证了其具备稳定、全面的障碍识别能力。在此基础上,利用语义标签和三维点云构建了多层2.5D地图,基于语义标签对地形的可通行等级进行初步分级;其次基于地面高程计算了地形平整度分数,测量特殊环境要素(如垂直墙)的几何参数,并结合履带车辆几何构型预测了车辆行驶位姿,量化由车辆坡道静态稳定性、地面语义标签和几何属性之间的耦合关系,进而通过代价函数综合评估车辆通行风险和代价,构建以车辆为中心的可通行性地图。通过与同类方法比较验证了所提方法的有效性和可靠性,提升了为无人履带平台的决策、规划和控制提供数据支持。

关键词: 履带车辆, 越野环境, 可通行性分析, 高程地图, 语义分割

Abstract: To address the limitations of existing traversability analysis methods, which often suffer from incomplete obstacle recognition and poor generalization in complex off-road environments, this paper proposes an obstacle recognition algorithm based on open-vocabulary semantic segmentation. The method extracts semantic labels of obstacles and terrain around the vehicle, enabling effective identification of previously unseen obstacles in unstructured environments. The algorithm is validated on both datasets and real-world experiments, demonstrating its stability and comprehensive recognition capability. Building upon this, a multi-layer 2.5D map is constructed by integrating semantic labels with 3D point clouds. First, terrain is preliminarily classified into passability levels according to semantic labels. Second, terrain smoothness is quantified based on ground elevation, while geometric parameters of special environmental features (e.g., vertical walls) are measured. Furthermore, the vehicle’s driving posture is predicted by incorporating the geometric configuration of a tracked vehicle, thereby quantifying the coupling relationship among static slope stability, semantic terrain categories, and geometric attributes. A cost function is then designed to jointly assess traversal risk and cost, ultimately generating a vehicle-centric traversability map. Comparative experiments against state-of-the-art methods verify the effectiveness and reliability of the proposed approach, which enhances data support for decision-making, planning, and control of unmanned tracked platforms.

Key words: tracked vehicle, off-road environment, traversability analysis, elevation mapping, semantic segmentation

中图分类号: