[1] |
ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: past, present and future: arXiv:1610.02984[R]. Ithaca, NY, US: Cornell University, 2016: 1610.02984.
|
[2] |
KARANAM S, GOU M R, WU Z Y, et al. A systematic evaluation and benchmark for person re-identification:features, metrics, and datasets[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2019, 41(3):523-536.
|
[3] |
CHEN Y C, ZHU X, ZHENG W S, et al. Person re-identification by camera correlation aware feature augmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 40(2):392-408.
|
[4] |
WU L, WANG Y, GAO J B, et al. Where-and-when to look: deep siamese attention networks for video-based person re-identification[J]. IEEE Transactions on Multimedia, 2018, 21: 1412-1424.
doi: 10.1109/TMM.6046
URL
|
[5] |
YANG X, ZHOU P C, WANG M. Person reidentification via structural deep metric learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10):2987-2998.
doi: 10.1109/TNNLS.2018.2861991
pmid: 32175851
|
[6] |
WEI L H, ZHANG S L, YAO H T, et al. GLAD:global-local-alignment descriptor for scalable person re-identification[J]. IEEE Transactions on Multimedia, 2019, 21(4):986-999.
doi: 10.1109/TMM.6046
URL
|
[7] |
郑爱华, 曾小强, 江波, 等. 基于局部异质协同双路网络的跨模态行人重识别[J]. 模式识别与人工智能, 2020, 33(10):867-878.
doi: 10.16451/j.cnki.issn1003-6059.202010001
|
|
ZHENG A H, ZENG X Q, JIANG B, et al. Cross-modal person re-identification based on local heterogeneous collaborative dual-path network[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10):867-878. (in Chinese)
doi: 10.16451/j.cnki.issn1003-6059.202010001
|
[8] |
刘玉林. 跨模态行人重识别研究综述[J]. 电视技术, 2022, 46(5):9-11.
|
|
LIU Y L. A review of cross-modal person re-identification[J]. Video Engineering, 2022, 46(5):9-11. (in Chinese)
|
[9] |
XIA D X, LIU H J, XU L L, et al. Visible-infrared person re-identification with data augmentation via cycle-consistent adversarial network[J]. Neurocomputing, 2021, 443:35-46.
doi: 10.1016/j.neucom.2021.02.088
URL
|
[10] |
崔令飞, 郭永红, 修全发, 等. 基于国产嵌入式智能计算平台的无人机检测方法[J]. 兵工学报, 2022, 43(增刊1): 146-154.
|
|
CUI L F, GUO Y H, XIU Q F, et al. UAV detection method based on domestic embedded intelligent computing platform[J]. Acta Armamentarii, 2022, 43(S1): 146-154. (in Chinese)
doi: 10.12382/bgxb.2022.A013
|
[11] |
GOMES H, REDINHA N, LAVADO N, et al. Counting people and bicycles in real time using YOLO on jetson nano[J]. Energies, 2022, 15(23):8816.
doi: 10.3390/en15238816
URL
|
[12] |
OLIVEIRA V M, MOREIRA A H J. Edge AI system using a thermal camera for industrial anomaly detection[M]. Cham, Germany:Springer, 2022:172-178.
|
[13] |
DINH D L, NGUYEN H N, THAI H T, et al. Towards AI-based traffic counting system with edge computing[J]. Journal of Advanced Transportation, 2021, 2021(2):1-15.
|
[14] |
REN S, KIM J S, CHO W S, et al. Big data platform for intelligence industrial IoT sensor monitoring system based on edge computing and AI[C]//Proceedings of 2021 International Conference on Artificial Intelligence in Information and Communication.Jeju Island, Korea:IEEE, 2021.
|
[15] |
LYU S, LI R, ZHAO Y W, et al. Green citrus detection and counting in orchards based on YOLOv5-CS and AI edge system[J]. Sensors, 2022, 22(2):576.
doi: 10.3390/s22020576
URL
|
[16] |
WU A C, ZHENG W S, YU H X, et al. RGB-infrared cross-modality person re-identification[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice,Italy:IEEE, 2017.
|
[17] |
NGUYEN D T, HONG H G, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3):605.
doi: 10.3390/s17030605
URL
|
[18] |
YE M, SHEN J B, SHAO L. Visible-infrared person re-identification via homogeneous augmented tri-modal learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 16:728-739.
doi: 10.1109/TIFS.10206
URL
|
[19] |
YE M, LAN X, LI J W, et al. Hierarchical discriminative learning for visible thermal person re-identification[C]//Proceedings of National Conference on Artificial Intelligence. Reston, VA, US:AAAI, 2018.
|
[20] |
HAO Y, WANG N N, LI J, et al. HSME: hypersphere manifold embedding for visible thermal person re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. HI, US:AAAI, 2019:8385-8392.
|
[21] |
WANG Z X, WANG Z, ZHENG Y Q, et al. Learning to reduce dual-level discrepancy for infrared-visible person re-identification[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington,D.C.,US:IEEE, 2019.
|
[22] |
YE M, LAN X, LENG Q M. Modality-aware collaborative learning for visible thermal person re-identification[C]//Proceedings of the 27th ACM International Conference. New York, NY, US:ACM, 2019.
|
[23] |
FENG Z X, LAI J H, XIE X H. Learning modality-specific representations for visible-infrared person re-identification[J]. IEEE Transactions on Image Processing: a Ppublication of the IEEE Signal Processing Society, 2019, 29:579-590.
|