[1] |
李嘉麒, 魏曙光, 廖自力, 等. 陆战平台全电化关键技术发展综述[J]. 兵工学报, 2021, 42(10): 2049-2059.
doi: 10.3969/j.issn.1000-1093.2021.10.001
|
|
LI J Q, WEI S G, LIAO Z L, et al. Review on the key technologies and development of all-electric land warfare platform[J]. Acta Armamentarii, 2021, 42(10):2049-2059. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.10.001
|
[2] |
ZHANG X, MI C. Vehicle power management[M]. London: Springer, 2011.
|
[3] |
马晓军, 袁东, 项宇, 等. 陆战平台综合电力系统及其关键技术研究[J]. 兵工学报, 2017, 38(2):396-406.
doi: 10.3969/j.issn.1000-1093.2017.02.026
|
|
MA X J, YUAN D, XIANG Y, et al. Research on integrated power system and its key techniques of ground combat platform[J]. Acta Armamentarii, 2017, 38(2):396-406. (in Chinese)
|
[4] |
孙逢春, 张承宁. 装甲车辆混合动力电传动技术[M]. 北京: 国防工业出版社, 2008.
|
|
SUN F C, ZHANG C N. Hybrid electric drive technology for armored vehicles[M]. Beijing: National Defense Industry Press, 2008. (in Chinese)
|
[5] |
李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1):2-17.
|
|
LI X L, GUO L, WANG C S, et al. Key technologies of DC microgrids: an overview[J]. Proceedings of the CSEE, 2016, 36(1):2-17. (in Chinese)
|
[6] |
林程, 孙建侠, 徐垚, 等. 电动汽车驱动系统直流母线稳定性分析[J]. 汽车工程, 2022, 44(4):583-590.
|
|
LIN C, SUN J X, XU Y, et al. Stability analysis of DC bus of electric vehicle drive system[J]. Automotive Engineering, 2022, 44(4): 583-590. (in Chinese)
|
[7] |
VESITI S, SUNTIO T, OLIVER J A, et al. Impedance-based stability and transient-performance assessment applying maximum peak criteria[J]. IEEE Transactions on Power Electronics, 2013, 28(5):2099-2104.
doi: 10.1109/TPEL.2012.2220157
URL
|
[8] |
付媛, 邵馨玉, 赵欣艳, 等. 基于附加电量的直流微电网动态稳定控制策略[J]. 电力自动化设备, 2021, 41(5):136-144,159.
|
|
FU Y, SHAO X Y, ZHAO X Y, et al. Dynamic stability control strategy of DC microgrid based on additional electric quantity[J]. Electric Power Automation Equipment, 2021, 41(5):136-144,159. (in Chinese)
|
[9] |
KABALAN M, SINGH P, NIEBUR D. Large signal Lyapunov-based stability studies in microgrids: a review[J]. IEEE Transactions on Smart Grid, 2017, 8(5):2287-2295.
doi: 10.1109/TSG.2016.2521652
URL
|
[10] |
XIE W Q, HAN M X, CAO W Y, et al. System-level large-signal stability analysis of droop-controlled DC microgrids[J]. IEEE Transactions on Power Electronics, 2020,(99):1-1.
|
[11] |
GRIFFO A, WANG J B. Large signal stability analysis of “more electric” aircraft power systems with constant power loads[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 477-489.
doi: 10.1109/TAES.2012.6129649
URL
|
[12] |
高强, 袁东, 刘春光, 等. 车载综合电力系统大信号失稳预测[J]. 兵器装备工程学报, 2020, 41(12):143-148.
|
|
GAO Q, YUAN D, LIU C G, et al. Large-signal instability prediction of vehicular integrated power system[J]. Journal of Ordnance Equipment Engineering, 2020, 41(12):143-148. (in Chinese)
|
[13] |
JIANG J B, LIU F, PAN S, et al. A conservatism-free large signal stability analysis method for DC microgrid based on mixed potential theory[J]. IEEE Transactions on Power Electronics, 2019, 33(11):1342-11351.
|
[14] |
ZHAO W Z, ZHENG J H, HAN Z H, et al. Large-disturbance stability analysis method based on mixed potential function for AC/DC hybrid distribution network with PET[J]. IET Generation Transmission & Distribution, 2020, 14(18):3802-3813.
doi: 10.1049/iet-gtd.2019.1700
URL
|
[15] |
厉泽坤, 孔力, 裴玮. 直流微电网大扰动稳定判据及关键因素分析[J]. 高电压技术, 2019, 45(12):3993-4002.
|
|
LI Z K, KONG L, PEI W. Analyses of stability criterion and key factors of DC microgrid under large disturbance[J]. High Voltage Engineering, 2019, 45(12):3993-4002. (in Chinese)
|
[16] |
厉泽坤, 孔力, 裴玮, 等. 基于混合势函数的下垂控制直流微电网大扰动稳定性分析[J]. 电网技术, 2018, 42(11):3725-3734.
|
|
LI Z K, KONG L, PEI W, et al. Large- disturbance stability analysis of droop-controlled dc microgrid based on mixed potential function[J]. Power System Technology, 2018, 42(11):3725-3734. (in Chinese)
|
[17] |
刘海涛, 熊雄, 徐旖旎, 等. 含恒功率负载的直流微网稳定性分析[J]. 电力系统及其自动化学报, 2022, 34(5):42-49.
|
|
LIU H T, XIONG X, XU Y N, et al. Stability analysis of DC microgrid with constant power load[J]. Proceedings of the CSU-EPSA, 2022, 34(5):42-49. (in Chinese)
|
[18] |
KIM H J, KANG S W, SEO G S. Large-signal stability analysis of DC power system with shunt active damper[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6270-6280.
doi: 10.1109/TIE.2016.2581150
URL
|
[19] |
滕昌鹏, 王玉斌, 周博恺, 等. 含恒功率负载的直流微网大信号稳定性分析[J]. 电工技术学报, 2019, 34(5):973-982.
|
|
TENG C P, WANG Y B, ZHOU B K, et al. Large-signal stability analysis of DC microgrid with constant power loads[J]. Transactions of China Electrotechnical Society, 2019, 34(5):973-982. (in Chinese)
|
[20] |
AHMADI H, KAZEMI A. The islanded micro-grid large signal stability analysis based on neuro-fuzzy model[J]. International Transactions on Electrical Energy Systems, 2020, 30(8):e12449.
|
[21] |
LIU X B, SUN X X. Large signal stability analysis of hybrid AC/DC microgrid based on T-S fuzzy model method[C]//Proceedings of the 2019 22nd International Conference on Electrical Machines and System. Harbin, China: IEEE, 2019:1-6.
|
[22] |
HUANG T, GAO S C, XIE L. A neural Lyapunov approach to transient stability assessment of power electronics-interfaced networked microgrids[J]. IEEE transactions on Smart Grid, 2022, 13(1):106-118.
doi: 10.1109/TSG.2021.3117889
URL
|
[23] |
EMADI A, KHALIGH A, RIVETTA C, et al. Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives[J]. IEEE Transactions on Vehicular Technology, 2006, 55(4): 1112-1125.
doi: 10.1109/TVT.2006.877483
URL
|
[24] |
RAHIMI A M, EMADI A. An analytical investigation of DC/DC power electronic converters with constant power loads in vehicular power systems[J]. IEEE Transactions on Vehicular Technology, 2009, 58(6):2689-2702.
doi: 10.1109/TVT.2008.2010516
URL
|
[25] |
LASLEY E L, MICHEL A N. Input-output stability of interconnected system[J]. IEEE Transactions on Automatic Control, 1976, 21(1):84-89.
doi: 10.1109/TAC.1976.1101140
URL
|
[26] |
KOTRA S, MISHRA M. Design and stability analysis of DC microgrid with hybrid energy storage system[J]. IEEE Transactions on Sustainable Energy, 2019, 10(3):1603-1612.
doi: 10.1109/TSTE.2019.2891255
URL
|
[27] |
侯珏. 增程式电动汽车预测型能量管理策略研究[D]. 杭州: 浙江大学, 2022.
|
|
HOU J. Research on the predictive energy management strategy of range extended electric vehicles[D]. Hangzhou: Zhejiang University, 2022. (in Chinese)
|